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Abstract 24 

Increased bacterial diversity on diseased corals can obscure disease etiology and complicate our 25 

understanding of pathogenesis.  To untangle microbes that may cause white band disease signs 26 

from microbes responding to disease, we inoculated healthy Acropora cervicornis corals with an 27 

infectious dose from visibly diseased corals.  We sampled these dosed corals and healthy 28 

controls over time for sequencing of the bacterial 16S region. Endozoicomonas were associated 29 

with healthy fragments from 4/10 colonies, dominating microbiomes before dosing and 30 

decreasing over time only in corals that displayed disease signs, suggesting a role in disease 31 

resistance. We grouped disease-associated bacteria by when they increased in abundance 32 

(primary vs secondary) and whether they originated in the dose (colonizers) or the previously 33 

healthy corals (responders). We found that all primary responders increased in all dosed corals 34 

regardless of final disease state and are therefore unnot likely to cause disease signs.  In contrast, 35 

primary colonizers in the families Pasteurellaceae and Francisellaceae increased solely in dosed 36 

corals that ultimately displayed disease signs, and may be infectious foreign bacteria involved in 37 

the development of disease signs. Moving away from a static comparison of diseased and healthy 38 

bacterial communities, we provide a framework to identify key players in other coral diseases.   39 

  40 

 41 

  42 
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Introduction 43 

 Marine invertebrates are home to some of the most widely studied and complex bacterial 44 

symbioses. The deep-sea hydrothermal vent tube worms Riftia pachyptila lack mouths or guts, 45 

instead acquiring nutrients from a specialized organ containing chemoautotrophic bacteria 46 

(Cavanaugh et al., 1981).  The bobtail squid, Euprymna scolopes, has also developed a 47 

specialized organ for its bacterial symbiont, Vibrio fischeri, allowing it to be bioluminescent 48 

(Nyholm & McFall-Ngai, 2004).  As we learn more about these mutualistic relationships, we 49 

also better understand the continuum that lies between pathogens and beneficial symbionts.  50 

Theories posit that some beneficial bacteria may have originally been pathogens, evolving with 51 

the host to increase host fitness (Sachs et al., 2011). Recently, the genome of a sulfur-oxidizing 52 

beneficial symbiont of deep-sea mussels was found to contain homologs of toxin-encoding 53 

virulence genes, complicating our understanding of pathogens and virulence (Sayavedra et al., 54 

2015).   55 

 The number of described marine diseases and their impacts have increased rapidly in 56 

recent years, contributing to the collapse of crucial marine ecosystems (Weil & Rogers, 2011, 57 

Burge et al., 2014).  This increase in epizootics is likely due in part to changes in marine 58 

bacterial-animal relationships as a result of anthropogenic inputs and the changing climate.  59 

Coastal marine ecosystems and the surrounding seawater are increasingly saturated with 60 

microbes profiting from rising temperatures (Tout et al., 2015, Zaneveld et al., 2016) and 61 

increased available nutrients due to both agricultural run-off (Garren & Azam, 2012) and a shift 62 

to algal-dominated ecosystems (Haas et al., 2016). This increase in microbial abundance coupled 63 

with behavioral and gene-regulatory changes in previously benign bacteria have altered 64 

definitions of disease and symbiosis.  In order to understand and ultimately control these new 65 
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epizootics, we need to examine how the bacterial communities associated with marine animals 66 

change, both as a cause of and in response to disease: shifting between beneficial, mutualistic, 67 

and pathogenic relationships.   68 

 White band disease (WBD) is an infectious disease currently decimating populations of 69 

the two species of Caribbean Acropora coral (Acropora cervicornis and A. palmata) (Randall & 70 

van Woesik, 2015).  Acroporids are fast-growing reef-building corals that create habitats for 71 

numerous species of fish and invertebrates, including slower-growing species of corals 72 

(Gladfelter et al., 1977, Tunnicliffe, 1983).  WBD is characterized by a front of necrotic tissue 73 

(and sometimes a zone of bleached tissue), which proceeds rapidly from base to tip of the coral 74 

colony, leaving behind a band of white skeleton (Gladfelter, 1982).  WBD can be transmitted 75 

through the water column and by the corallivorous snail Coralliophila abbreviata (Gignoux-76 

Wolfsohn et al., 2012).  Multiple studies have confirmed that white band disease signs can be 77 

caused by the bacterial fraction of a disease slurry and arrested by the administration of 78 

antibiotics, suggesting a bacterial cause of the disease. (Kline & Vollmer, 2011, Sweet et al., 79 

2014).  Vibrio charchariae has been shown to elicit WBD signs in A. cervicornis in Puerto Rico 80 

(Gil-Agudelo et al., 2006), and a Rickettsiales-like organism, which may be compromising the 81 

host, has been associated with both apparently healthy A. cervicornis and A. cervicornis 82 

displaying disease signs (Peters et al., 1983). How these and other bacteria contribute to the 83 

development of WBD signs and whether there is a single primary WBD pathogen across the 84 

Caribbean and through time is still unknown. 85 

Previously, Gignoux-Wolfsohn and Vollmer (2015) used 16S gene sequences to find that WBD-86 

associated bacterial communities were significantly different from those of healthy corals.  In 87 

keeping with studies of other coral diseases, we found that the bacterial communities of corals 88 
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displaying disease signs were more diverse, with more consistently-associated OTUs than 89 

apparently-healthy corals (e.g., Sunagawa et al., 2009, Closek et al., 2014, Roder et al., 2014). 90 

The lack of consistent healthy-associated bacteria indicates that other factors may be shaping this 91 

microbiome.  We also found showed that the site of collection influenced the microbial 92 

communities as much as the disease state of the coral did.;  Tthe many disease-associated OTUs 93 

found across among all sites becaome many putative WBD pathogen(s).  Bacterial diseases can 94 

be caused by a few cells of a single pathogen invading the host tissues (low infectious dose) e.g. 95 

(Zwart et al., 2011), a consortium of pathogens that may be sufficient but not necessary to cause 96 

disease signs (Lemire et al., 2015), or normally commensal bacteria reaching a threshold, which 97 

initiates a switch to pathogenic behavior (Rutherford & Bassler, 2012).  Furthermore, commensal 98 

bacteria could become pathogenic due to an external environmental trigger (Lesser et al., 2007).  99 

The uncertainty around which of these scenarios leads to the infectious white band disease-like 100 

signs complicates our ability to determine which of the identified “disease-associated” OTUs 101 

may be invading the host tissue and causing the disease signs and which may be responding to 102 

the necrosis, host immune response, or secondary metabolites produced by the pathogen(s).  We 103 

exposed corals to an infectious dose of homogenized tissue from diseased corals and sampled 104 

corals as they transitionedat three time points: from 1) apparent health prior to exposure, 2)to 105 

apparent health after post exposure to an infectious dose, to the3) during the development of 106 

characteristic WBD signs.  By using corals from multiple coral colonies, we were able to better 107 

identify resident microbes associated with each colony, and by performing this experiment in 108 

controlled tanks we removed the possibility of an environmental trigger of pathogenicity.  We 109 

examined disease-associated OTUs for consistency across two sites in order to remove the high 110 

site variability we had previously found. This controlled infection experiment allowed us to 111 
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answer two main questions about the diseased coral microbiome: 1) Where do these disease-112 

associated bacteria originate? And 2) when do they increase in abundance?  We expected the 113 

final diseased-coral microbiome to be shaped by increased abundances of both bacteria 114 

originating in the dose (here referred to as colonizers) and bacteria that were found a priori on 115 

the corals (responders) increasing in abundance either before (primary) or after (secondary) 116 

development of disease signs.   117 

Materials and Methods 118 

Tank infection experiment 119 

An infection experiment was set up in July 2014, using Acropora cervicornis from two 120 

sites (CK4 and CK14) 600m apart in Coral Cay, Bocas del Toro, Panama (site). At each site, 121 

corals to be inoculated were collected by taking twelve apparently healthy five cm fragments 122 

from five colonies (presumed to be distinct genotypes, at least 10 m apart) of A. cervicornis for a 123 

total of 10 colonies (colony) and corals to be made into inoculants were collected by taking three 124 

replicate five cm fragments from the disease interfaces (or equivalent location) of three colonies 125 

exhibiting signs of WBD and from three apparently healthy control colonies.    126 

These fragments were brought to the Smithsonian Tropical Research Institute and the 127 

fragments to be inoculated were cable-tied to plastic louver. Ten fragments (one fragment from 128 

each colony) were  and placed in each of 12 closed 50 L tanks (tank) with a powerhead See Fig. 129 

S1 for experimental design, 10 fragments (one fragment from each colony) per tank. Corals were 130 

sampled as they were placed in tanks (time one) in the following manner: two polyps from the 131 

middle of each fragment (this small sample was used so as not to stress the coral fragment) were 132 

removed using sterile forceps and placed in 200 µl of guanidine thiocyanate DNA Buffer 133 

(Fukami et al., 2004).  Forceps were flame sterilized in between corals.  Throughout the 134 
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experiment, DI water was added to maintain salinity and volume and temperature was measured 135 

to ensure consistency across tanks.  136 

To create the the 12 inoculants (three doses and three control inoculants from each site,) 137 

,the t hree replicate fragments from each colony were homogenized by shaking in a falcon tube 138 

with sterile glass beads and 15 mL filtered seawater until no tissue remained on the skeleton 139 

(Kline & Vollmer, 2011), and. Fragments from the same colony were then pooled to create three 140 

doses and three control inoculants from each site (inoculant site). Two hundred µl of each 141 

inoculant was centrifuged and preserved in 500µl of DNA buffer.  142 

Prior to inoculation, corals were lesioned using an airbrush and filtered seawater 143 

(Gignoux-Wolfsohn et al., 2012). Six tanks were then inoculated with 30 mL of dose (the dose 144 

level of inoculant), three per site (inoculant site),  and six tanks were inoculated with 30 mL of 145 

control inoculant (the control level of inoculant), three per site (inoculant site).  Corals were then 146 

sampled at 10 hours post-inoculation as described above (time two).  When dosed corals began 147 

to show disease signs (i.e. the white lesion grew to encircle the coral and form the characteristic 148 

white band of skeleton) beginning at 22 hours post-inoculation, they were sampled and removed 149 

from the experiment along with their corresponding control fragment (time three).  Sampling 150 

continued in this manner until 60 hours post-inoculation when all remaining corals were sampled 151 

(See Fig. S1 for experimental design and sampling).  The final disease state of a coral was 152 

determined based on whether or not that coral ultimately showed disease signs.  For example, 153 

even though a sample collected at time two came from a healthy-looking coral, if that coral 154 

displayed disease signs at time three, the sample’s final disease state was diseased. Forty-three 155 

out of 60 corals that were dosed ultimately displayed disease signs. , and Ttwo of the 60 control 156 

corals died over the course of the experiment and were removed from subsequent analyses 157 
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(Table S1).   158 

DNA was extracted from samples using the Agencourt DNAdvance bead extraction kit 159 

(Agencourt Bioscience Corporation, Beverly, MA, USA) with the addition of PEB buffer. A 160 

blank DNA extraction was performed with each round.  The V6 hyper-variable region of the 16S 161 

gene was chosen as the target due to its short length and high sensitivity to species-level diversity 162 

(Youssef et al., 2009, Barriuso et al., 2011, Caporaso et al., 2012).  The V6 region was amplified 163 

with primers consisting of a region complementary to V6, a unique five base pair barcode, and 164 

the Illumina sequencing adapter (Gloor et al., 2010): 165 

V6-L [5’ACACTCTTTCCCTACACGACGCTCTTCCGATCTnnnnnCWACGCGARG 166 

AACCTTACC3’] 167 

V6-R [5’CGGTCTCGGCATTCCTGCTGAACCGCTCTTCCGATCTnnnnnACRACA 168 

CGAGCTGACGAC3’]   169 

A separate 40 µl PCR reaction was performed for each sample with a unique combination 170 

of primers: 5 µl each 4 mM primer, 8 µl standard Taq buffer (New England Biolabs, Ipswich, 171 

MA, USA), 0.8 µl dNTPs, 20 µl diH20, 0.5 µl Taq DNA polymerase (NEB) for the following 172 

cycle: 94°C for 2 m, with 28 cycles of: 94°C for 15 s, 55°C for 15 s, 72°C for 30 s, ending with 173 

72°C for 1 m.  A negative control and blank were amplified with each set of reactions.  174 

Concentrations of PCR products were quantified using the Qubit 2.0 fluorometer (Thermo Fisher 175 

Scientific, Waltham, MA) to determine the volume of each product to pool.  The pooled PCR 176 

products were then amplified with the following Illumina primers:  177 

OLJ139 [5’AATGATACGGCGACCACCGAGATCTACACTCTTTCCCTACACGA3’]  178 

OLJ140 [5’CAAGCAGAAGACGGCATACGAGATCGGTCTCGGCATTCCTGC 179 

TGAAC3’] in a 40 µl reaction: 8 µl Phusion buffer (NEB) 0.8 µl dNTPs, 0.5 µl Phusion 180 
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HIfidelity Taq (NEB), 20.2 µl diH20, 0.5 µl DNA (previous PCR product), for the following 181 

cycle: 98°C for 2 m, 12 cycles of: 98°C for 1 m, 55°C for 1 m, 72°C for 1 m, and finally 72°C 182 

for 5 m.  Final PCR products were cleaned using DNAmpure beads (Agencourt).  Concentration 183 

and length were verified using the Agilent 2100 Bioanalyzer system (Agilent, Santa Clara, CA, 184 

USA) and sequenced using paired-end 150 base pair sequencing on an Illumina HiSeq2000. 185 

Bioinformatics 186 

Paired reads were overlapped using FLASH (Magoc & Salzberg, 2011).  Sequences were 187 

then demultiplexed, quality filtered, and trimmed using a custom python script available at:  188 

https://github.com/sagw/Python_scripts/blob/master/SD1/SD1_demultiplex.py 189 

Using Qiime 1.9.0, 97% OTUs were picked using the open reference OTU picking method and 190 

taxonomy assigned using BLAST against the July 2015 SILVA database (Quast et al., 2013). 191 

OTUs that were identified as chloroplasts using BLAST were removed. Chimeras were detected 192 

and removed using UCHIME (Edgar et al., 2011). Further details of bioinformatics can be found 193 

here:  194 

https://github.com/sagw/Notebooks/tree/master/SD1_notebooks. 195 

Statistical Analyses 196 

OTU counts were normalized using the sizefactors method with arithmetic means in the 197 

R package DESeq2 (McMurdie & Holmes, 2014). The significance of the community level 198 

effects was tested using PERMANOVA of Bray-Curtis dissimilarities (adonis in package Vegan) 199 

(Jari Oksanen & O'Hara, 2013). Two PERMANOVAS were performed: one using the formula: 200 

“~ colony” for time one samples, and one using the formula: “~ final disease state + inoculant * 201 

site * time * inoculant site” for times two and three samples. Site was removed from the model 202 

because the main effect and interactions were not significant.  Diversity metricsShannon 203 
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diversity and rarefied richness were calculated using Vegan (Jari Oksanen & O'Hara, 2013).  204 

To evaluate changes in abundance of individual OTUs across among main effects and 205 

interactions with the addition of random effects, abundance data for each OTU were fit to 206 

quasipoisson mixed-effects generalized linear models (GLMMPQL in package MASS) 207 

(Venables & Ripley, 2003).  GLMMs for time one samples used the fixed-effect formula: “ ~ 208 

colony” and the random effect formula: “~1|tank”.  GLMMs for times two and three samples 209 

used the fixed effect formula: “~ final disease state + site * inoculant * time * inoculant site” and 210 

the random effect formula: “~1|tank/time”.  Significance of effects was then determined by type-211 

III ANOVA using the Wald chi-square test (Anova in package Car) (Fox & Weisberg, 2011) and 212 

significantly different OTUs (p-value adjusted by false discovery rate <0.05) were determined 213 

for each main effect and interaction. OTUs were then grouped according to significance of 214 

GLMM terms and post-hoc calculated means and mean abundance of a subset of OTUs was 215 

plotted using ggplot2 (Wickham, 2009).   216 

OTU Group Definitions 217 

We identified colony-specific healthy residents as OTUs that differed significantly by 218 

colony at time one and by final disease state at times two and three, with a higher abundance in 219 

control than dosed diseased corals.  The majority of these OTUs belonged to the genus 220 

Endozoicomonas, and so the mean of each OTU identified as Endozoicomonas was calculated 221 

for each colony and percent Endozoicomonas composition was calculated as a mean of the 222 

percent of the total microbiome for each sample belonging to a given colony.  223 

Secondary OTUs differed significantly by final disease state and were more abundant in 224 

dosed diseased than control corals at time three but not time two.  These OTUs were grouped by 225 

family, and means were calculated for dosed corals that showed disease signs at time three 226 
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separated by site and inoculant site. 227 

We identified bacteria that are likely involved in the etiology of the disease (primary 228 

OTUs) as those OTUs that increased in abundance on corals that ultimately showed disease signs 229 

prior to the development of these signs.  We assume that corals that were exposed to the 230 

infectious dose but did not display disease signs are resistant to the disease (i.e. decrease the 231 

pathogen load or prohibit infection) and may therefore not contain OTUs associated with the 232 

pathology of the disease within their microbiomes. We therefore focused on OTUs that were 233 

more abundant in dosed corals that ultimately displayed disease signs.   234 

We identified OTUs as primary responders if they 1) were absent from the dose; 2) were 235 

present in time-one corals; 3) differed significantly by final disease state in time-two and three 236 

corals; 4) were more abundant in dosed diseased corals than controls; and 5) did not differ 237 

significantly by colony, site, or the interaction of site and inoculant.  238 

We identified OTUs as primary colonizers if they: 1) were more abundant in the dose 239 

than the control inoculant; 2) differed significantly by final disease state; 3) were more abundant 240 

in dosed diseased corals than control corals at both times two and three; and 4) did not differ 241 

significantly by colony, site, and the interaction of inoculant and inoculant site.  242 

Secondary OTUs differed significantly by final disease state and were more abundant in 243 

dosed diseased than control corals at time three but not time two.  These OTUs were grouped by 244 

family, and means were calculated for dosed corals that showed disease signs at time three 245 

separated by site and inoculant site. 246 

 247 
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 All sequences were deposited to the Sequence Read Archive under the bioproject ID 248 

PRJNA387312.  Further specifics of analyses can be found here: https://github.com/sagw/R-249 

scripts/tree/master/SD1.   250 

 251 

Results and Discussion 252 

We identified groups of OTUs that consistently changed in abundance, contributing to 253 

the characteristic diseased coral microbiome: a reduction in resident OTUs associated with 254 

certain coral colonies (colony-specific residents), an increase in other resident OTUs (primary 255 

responders), and colonization by foreign bacteria (primary colonizers).  This method of 256 

identifying bacterial groups involved in the transition of a marine animal from health to visible 257 

disease signs can be applied to other underexplored marine diseases.  258 

Community-level effects 259 

Two hundred and seventy-five samples were sequenced yielding 65 413 553 overlapped 260 

reads, which resulted in 97 933 OTUs (97% similarity).  The bacterial communities on dosed 261 

corals became dramatically more diverse as they developed disease signs in terms of Shannon 262 

diversity (from 2.13, SE 0.12 to 4.18, SE 0.19, ANOVA, F1, 272=52.37, P<0.001) and rarefied 263 

richness (from 224.43 to 402.57, ANOVA, F1,272 =27.95, P<0.001) (Table S2).  This finding is 264 

consistent with other studies of coral disease-associated bacterial communities (e.g. (Croquer et 265 

al., 2013, Sweet et al., 2013, Gignoux-Wolfsohn & Vollmer, 2015, Meyer et al., 2015)). 266 

A large amount (18%) of the variation between bacterial communities of samples 267 

collected prior to dosing (at time one) was explained by the significant effect of colony 268 

(PERMANOVA, F9,81=1.8, P=0.001, R
2
=0.18).  For samples collected after dosing (times two 269 

and three), the main effect of final disease state, and the interaction of timepoint, inoculant, and 270 
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inoculant site, significantly affected the coral-associated bacterial communities (Table 1).  271 

 272 

Endozoicomonas are colony-specific residents of healthy corals 273 

In contrast to studies of other species of coral, where Endozoicomonas dominate the 274 

microbiomes of all healthy individuals (Apprill et al., 2013) (Bayer et al., 2013) (Yang et al., 275 

2010, Klaus et al., 2011, Jessen et al., 2013, Roder et al., 2015), reviewed in: (Neave et al., 276 

2016)), they were dominant residents of only four of the 10 colonies (marked as “High” in Fig. 277 

1) of healthy A. cervicornis, comprising 139 of the 175 OTUs identified as colony-specific 278 

residents of healthy corals by GLMM (Table S3). Endozoicomonas have been shown to form 279 

species-specific associations, with different strains found in different species, but they have not 280 

previously been shown to vary so drastically between among colonies of the same species 281 

(Neave et al., 2016).  For these four colonies, Endozoicomonas may be beneficial, since they 282 

were less abundant in corals displaying signs of disease than in healthy controls, and were also 283 

less abundant in samples of these diseased corals collected at time two prior to visual disease 284 

signs (Fig. 2).  These Endozoicomonas may only survive in healthy coral tissues; in other species 285 

of coral they have been identified in the endodermal tissues of the host coral (Bayer et al., 2013).  286 

Alternatively, Endozoicomonas may be out-competed by the disease-associated bacteria as the 287 

coral contracts disease.  Our results suggest that Endozoicomonas may help the coral fight off 288 

infection, as they were more abundant in corals that were exposed to the dose but remained 289 

healthy than in the healthy controls, which were never exposed to the dose (Fig. 2).  A recent 290 

study found that removal of Endozoicomonas from the surface mucus layer of corals made corals 291 

more susceptible to bleaching and necrosis, highlighting the importance of Endozoicomonas in 292 

coral fitness and protecting against foreign bacteria (Glasl et al., 2016).  The observed colony-293 
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specificity of Endozoicomonas residents could be due to both the host genetics and the 294 

environment.  Colonies are likely genetically unique, and a high abundance of Endozoicomonas 295 

may be contributing to the disease resistance previously seen in certain genotypes of A. 296 

cervicornis (Vollmer & Kline, 2008, Libro & Vollmer, 2016). Colonies are also located in 297 

slightly different locations on the reef and Endozoicomonas abundance has been correlated to 298 

favorable environmental conditions (Roder et al., 2015). Further investigation into the role 299 

Endozoicomonas may be playing in A. cervicornis health and disease resistance will be 300 

especially important given the recent finding that Endozoicomonas abundance within Acropora 301 

muricatae tissues decreases with increasing temperatures (Lee et al., 2015).   302 

Secondary OTUs are not consistent across site 303 

The majority of the 1,906 identified secondary OTUs were neither responders (44 OTUs) 304 

nor colonizers (222 OTUs). These OTUs were, therefore, presumed to either have originated in 305 

the water or been at undetectable abundances when time one samples were taken.  These OTUs 306 

appear to contribute the majority of the diversity found in bacterial communities of corals 307 

displaying disease signs, but in very low abundances. These low abundances likely, contribute 308 

ing to the difficulty in identifying important bacterial groups when comparing the bacterial 309 

communities of corals displaying disease signs to those of apparently healthy corals. Contrary to 310 

expectations, none of the secondary OTUs were consistent across among either site of origin of 311 

coral or dose.  Rather, all 1 906 of these secondary OTUs were also significant for the interaction 312 

of “site,” “inoculant,” “inoculant site,” and “timepoint” (Table S3, Table S4).   These secondary 313 

OTUs are unlikely to be involved in development of disease signs, but are more likely attracted 314 

to the nutrient source of the dying coral.  We only identified secondary OTUs (that were not 315 

unique to individual corals or tanks) that increased in abundance when the dose came from the 316 
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other site (e.g. CK4 corals inoculated with CK14 dose).  In the dosed corals that developed 317 

disease at time three, 1 676 OTUs were more abundant in CK4 corals inoculated with CK14 dose 318 

and 230 OTUs were more abundant in CK14 corals inoculated with CK4 dose.  Francisellaceae 319 

comprised the majority of these secondary OTUs on CK14 corals dosed with CK4 (55 OTUS), 320 

and had the second highest mean abundance after Methylococcaceae.  For CK14 corals dosed 321 

with CK4, the most abundant family of secondary OTUs with the highest number of OTUs was 322 

Campylobacteraceae (358) (Fig. 3).   Since theThe lack of consistency of secondary OTUs were 323 

not more abundant on corals across dose site and site indicates that, they are unlikely to be 324 

playing a significant role in disease causation. Rather, this pattern suggests that there is only an 325 

additionala secondary disturbance of the bacterial community when the disease-associated 326 

bacteria are not taken from surrounding corals. 327 

 328 

Primary responders are potential opportunists 329 

 We classified bacteria that were already present in lower numbers on the healthy corals 330 

before dosing and responded to the dose by growing more abundant as primary responders.  331 

Contrary to our expectations and previous studies suggesting coral disease is caused by 332 

opportunistic pathogenesis of resident bacteria (Chow et al., 2011; Lesser et al., 2007), all 272 333 

primary responders became more abundant after dosing in all dosed corals regardless of their 334 

final disease state (Fig. 4, Table S3).  These OTUs, equally abundant in dosed corals that 335 

remained healthy and dosed corals that displayed disease signs, are unlikely to be the sole cause 336 

of the disease. 337 

Primary responders in the phylum Bacteroidetes, which includes families 338 

Flavobacteriaceae (26 OTUs), Cryomorphaceae (22 OTUs), and Saprospiraceae (20 OTUs), 339 
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appeared to respond to both the disease dose and the general stress of the tank environment by 340 

increasing in all corals (including controls) at time three (Fig. 4).  We previously found many 341 

OTUs belonging to Flavobacteriales (which includes both Flavobacteriaceae and 342 

Cryomorphaceae) consistently associated with WBD-infected corals (Gignoux-Wolfsohn and 343 

Vollmer 2015).  Flavobacteriaceae have been associated with many coral diseases across oceans 344 

(e.g. (Apprill et al., 2013; Frias-Lopez et al., 2002; Ng et al., 2015; Roder et al., 2014b)), cause 345 

disease in fish (Starliper 2011), and are part of some healthy marine microbiomes (Apprill et al., 346 

2014).  Flavobacteriaceae were recently found to be enriched on algae-dominated reefs, which 347 

contain more readily accessible dissolved organic carbon (Haas et al., 2016).  Their high 348 

abundance in the closed aquaria, which likely grew increasingly nutrient-rich as corals died, is 349 

consistent with their functioning as copiotrophs; they may be blooming as they consume the 350 

dying coral or the secondary metabolites of other members of the diseased bacterial community.  351 

We previously identified strains of Saprospiraceae associated with both diseased and healthy 352 

corals (Gignoux-Wolfsohn and Vollmer 2015).  Members of this family include commonly 353 

found marine bacteria involved in the breakdown of complex carbon molecules, consistent with 354 

their possible response to a dying or stressed coral (Krieg et al., 2011).  355 

Rather than continuing to increase over time, primary responders belonging to the family 356 

Alteromonadaceae (24 OTUs) were most abundant at time two, before any corals displayed 357 

disease signs (Fig. 4).  These OTUs may grow as an initial response to the introduction of 358 

foreign microbes, possibly as defensive symbionts of the host coral.  Alteromonadaceae have 359 

been previously associated with healthy coral larvae (Ceh et al., 2013) and healthy adult corals 360 

(Cardenas et al., 2012), suggesting they can be beneficial symbionts.  They are also, however, 361 

more abundant in corals infected with multiple diseases (Frias-Lopez et al., 2002; Gignoux-362 
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Wolfsohn and Vollmer 2015; Roder et al., 2014a; Roder et al., 2014b; Sunagawa et al., 2009), 363 

consistent with a role as defensive symbionts.  Rhodobacteraceae, the bacterial family most 364 

widely associated with coral diseases (summarized in: (Mouchka et al., 2010) see also:(Cardenas 365 

et al., 2012; Gignoux-Wolfsohn and Vollmer 2015; Ng et al., 2015; Roder et al., 2014a; Roder et 366 

al., 2014b)), contained many primary responders (18 OTUs) responding to the dose not the final 367 

disease state of the coral (Fig. 4). Rhodobacteraceae seem to be important players in health and 368 

disease across for multiple coral species (Glasl et al., 2016; Mouchka et al., 2010), possibly as 369 

opportunists or as defensive symbionts, helping the host to fight off infection by foreign bacteria. 370 

Primary colonizers are likely putative primary pathogens 371 

We identified primary colonizers as 265 OTUs that originated in the disease dose and 372 

preferentially colonized corals prior to the development of disease signs, likely after 373 

chemotaxing through the water column towards the host coral and attaching to its surface (Fig. 5, 374 

Table S3).  The coral pathogen Vibrio corallilyticus uses the coral metabolite 375 

dimethylsulfoniopropionate to locate potential hosts (Garren et al., 2014); it is possible that the 376 

pathogen(s) may use a similar method of host location.  It is interesting, therefore, that we did 377 

not only identify one species of bacteria that originated in the dose and colonized corals prior to 378 

disease signs, but rather many sometimes distantly related OTUs.  This result likely explains the 379 

difficulty in identifying primary pathogens of coral diseases and indicates that there may not be a 380 

single primary pathogen, but a consortium of bacteria that cause disease signs.  Evidence that 381 

quorum sensing is important in contraction of WBD provides a possible method for inter-species 382 

communication and infection by a consortium (Certner and Vollmer 2015).  The previously 383 

suggested WBD pathogens, Vibrionaceae (one OTU), and Rickettsiaceae (5 OTUs), were not 384 

more abundant in dosed corals that displayed disease signs than those that remained healthy, 385 
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making them unlikely primary pathogens in this experiment (Fig. 5).    386 

Interestingly, taxonomy did not always dictate where and when OTUs were found. Many 387 

primary colonizers and primary responders were identified as belonging to the families 388 

Flavobacteriaceae and Alteromonadaceae.  The 22 Flavobacteriaceae identified as colonizers 389 

again appear to be acting as copiotrophs, and may have been abundant in the dose because they 390 

were primary responders on the corals used to create the dose.  In contrast, the 22 391 

Alteromonadaceae identified as primary colonizers followed a different pattern from the 392 

Alteromonadaceae OTUs in the primary responders group.  Instead, their pattern of abundance 393 

was similar to primary colonizer OTUs belonging to other families including 394 

Campylobacteraceae (25 OTUs), Francisellaceae (38 OTUs), and Pasteurellaceae (26 OTUs)— 395 

only colonizing corals prior to the development of disease signs, and proliferating as the disease 396 

progressed (Fig. 5).   397 

The absence of many groups of primary colonizers from corals that were dosed but did 398 

not display disease signs indicates that these OTUs are likely directly involved in the 399 

development of WBD signs (Fig. 5).  Members of the Campylobacteraceae family have been 400 

associated with multiple coral diseases including WBD (e.g. Gignoux-Wolfsohn and Vollmer 401 

2015; Roder et al., 2014a; Sunagawa et al., 2009; Sweet and Bythell 2012; Sweet et al., 2013).  402 

In other systems, Campylobacteraceae are known to be both commensal and zoonotic pathogens 403 

(Lee and Newell 2006; Stoddard et al., 2005). In contrast, Francisellaceae have not been 404 

previously associated with coral disease, but are common marine bacteria (Duodu et al., 2012), 405 

which can be intracellular pathogens of both Atlantic cod (Wangen et al., 2012) and humans 406 

(Sjostedt 2006) and are also endosymbionts of ciliates (Schrallhammer et al., 2011).   407 

Primary colonizers in the family Pasteurellaceae exhibited a pattern of colonization 408 
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consistent with a strong involvement in disease: these OTUs were very abundant in the dose and 409 

preferentially colonized dosed corals before they showed disease signs with a more dramatic 410 

increase in abundance than any other family (Fig. 5).  Pasteurellaceae have not been previously 411 

associated with coral disease, but they are common pathogens of many other animals including 412 

humans (Frey and Kuhnert 2002; Johnson and Rumans 1977) and were recently found to be 413 

enriched on reefs with high algal cover (Haas et al., 2016).  One possible explanation for our 414 

identification of Pasteurellaceae, and not V. charchariae behaving like a primary WBD 415 

pathogen, is that Pasteurellaceae may be an emerging pathogen of Panamanian corals that also 416 

causes WBD-like signs.  The increasingly algae-dominated Panamanian reefs may promote new 417 

coral pathogens that cause macroscopic signs similar to canonical WBD. 418 

While we identified some consistent actors in the diseased coral microbiome, we did not 419 

explain the majority of variation between samples, indicating there are other factors not 420 

examined in this study that shape the coral microbiome. This study used corals displaying 421 

disease signs consistent with WBD from Panama; whether the patterns described here apply to 422 

all corals displaying WBD-like signs across the Caribbean is unknown. We were limited by the 423 

length of the region sequenced and the available databases—as technology and resources 424 

improve, bacterial taxonomy will be better resolved.   425 

Conclusions 426 

The diseased coral microbiome is dependent on the pre-existing healthy microbiome, the 427 

disease history of the infected coral, the origin of the disease, and the timing of disease 428 

progression. Our approach allowed us to separate bacteria based on origin and timing of 429 

increased abundance, providing more information than previous culture-independent studies 430 

about what bacteria are likely contributing to disease.  Our finding that Endozoicomonas are only 431 
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associated with health on certain coral colonies may explain the variation in responses of 432 

individual corals to disease.  The discovery that primary responders, likely opportunists, increase 433 

in dosed corals regardless of final disease state negates hypotheses that white band disease on A. 434 

cervicornis is coral diseases arenot caused solely by opportunists.  We identified primary 435 

colonizers originating in the infectious dose and were able to closely track their changes in 436 

abundance as corals developed disease signs, identifying Campylobacteraceae, Francisellaceae, 437 

and Pasteurellaceae as the most likely primary pathogens.  Our results underscore the 438 

importance of incorporating time into future studies of marine diseases and the need to observe 439 

the behavior of individual bacterial strains rather than summarizing changes in communities only 440 

by higher-level taxonomy.  Our approach can be applied to other marine diseases that do not fit 441 

into a one-pathogen one-disease framework, providing a more holistic understanding of disease 442 

and allowing for the shifting definitions of pathogens within our changing marine climate.  443 
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Figure Legends  761 

Fig. 1. Endozoicomonas are colony-specific resident bacteria of healthy corals. a) Mean 762 

abundance of each resident OTU within each colony at time one, black bars denote standard 763 

error.  Colonies with greater than 40% of their total microbiome consisting of Endozoicomonas 764 Comment [SGW1]: Check that this is true 

and its not sd or something else? 
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at time one are labeled “High.”  b) Percent of total microbiome for each colony at time one that 765 

is identified as Endozoicomonas or other taxa. 766 

 767 

Fig. 2.  Abundance of resident Endozoicomonas in colonies with greater than 40% of their total 768 

microbiome consisting of Endozoicomonas at time one (high) in dosed corals times two and 769 

three. Y-axis is the difference between dosed corals and control corals at each time point; a 770 

negative value denotes a lower abundance in dosed corals than controls, and a positive value 771 

denotes a higher abundance in dosed corals than controls.  Means were calculated for corals 772 

exhibiting different final disease states (diseased or healthy) and then control means were 773 

subtracted.  774 

 775 

Fig. 3.  Mean abundance of secondary OTUs belonging to selected families on dosed corals that 776 

became diseased at time three.  Dosed corals are separated by the site of origin of the dose and 777 

the site of origin of the corals.  OTUs are grouped by family, and the number of OTUs in each 778 

group is noted on the top of the mean abundance bar.  779 

 780 

Fig. 4.  Mean abundance of primary responders belonging to selected families across time.  781 

OTUs are grouped by family, and the size of the points denotes how many OTUs belonged to 782 

that family. 783 

 784 

Fig. 5.  Mean abundance of primary colonizers belonging to selected families across time.  OTUs 785 

are grouped by family, and the size of the points denotes how many OTUs belonged to the 786 
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specified family.  Inset is the mean abundance for OTUs in that family in the inoculants (dose 787 

and control).  Arrows signify time of inoculation.  Error bars denote standard error. 788 

 789 
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Fig. 1. Endozoicomonas are colony-specific resident bacteria of healthy corals. a) Mean abundance of each 
resident OTU within each colony at time one, black bars denote standard error.  Colonies with greater than 
40% of their total microbiome consisting of Endozoicomonas at time one are labeled “High.”  b) Percent of 

total microbiome for each colony at time one that is identified as Endozoicomonas or other taxa.  
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Fig. 2.  Abundance of resident Endozoicomonas in colonies with greater than 40% of their total microbiome 
consisting of Endozoicomonas at time one (high) in dosed corals times two and three. Y-axis is the 

difference between dosed corals and control corals at each time point; a negative value denotes a lower 

abundance in dosed corals than controls, and a positive value denotes a higher abundance in dosed corals 
than controls.  Means were calculated for corals exhibiting different final disease states (diseased or healthy) 

and then control means were subtracted.  
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Fig. 3.  Mean abundance of secondary OTUs belonging to selected families on dosed corals that became 
diseased at time three.  Dosed corals are separated by the site of origin of the dose and the site of origin of 
the corals.  OTUs are grouped by family, and the number of OTUs in each group is noted on the top of the 

mean abundance bar.  
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Fig. 4.  Mean abundance of primary responders belonging to selected families across time.  OTUs are 
grouped by family, and the size of the points denotes how many OTUs belonged to that family.  
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Fig. 5.  Mean abundance of primary colonizers belonging to selected families across time.  OTUs are grouped 
by family, and the size of the points denotes how many OTUs belonged to the specified family.  Inset is the 

mean abundance for OTUs in that family in the inoculants (dose and control).  Arrows signify time of 
inoculation.  Error bars denote standard error.  
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Table 1. PERMANOVA of Bray-Curtis dissimilarity between samples collected at times 

two and three.   

Effect df Sums of Sqs Mean Sqs F Model R
2
 P 

Final disease state 1 3.49 3.49 9.43 0.030 0.001 

Inoculant 1 1.06 1.06 2.86 0.0092 0.001 

Time 1 7.77 2.59 7.00 0.067 0.001 

Inoculant site 1 0.89 0.89 2.40 0.0077 0.001 

Inoculant x time 1 1.67 0.83 2.25 0.014 0.001 

Inoculant x inoculant site 1 1.20 1.20 3.23 0.010 0.001 

Time x inoculant site 1 2.41 0.80 2.17 0.020 0.001 

Inoculant x time x 

inoculant site 

1 1.60 0.80 2.15 0.014 0.001 

Residuals 162 95.46 0.37  0.83  

Total 178 115.53   1.00  
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Inoculation:
Inoculant	is	added	to	water	in	tank

CK4 Dose

CK14 Dose

CK4 Control

CK14 Control

CK 4   CK 14CK 4   CK 14CK 4   CK 14 CK 4   CK 14CK 4   CK 14CK 4   CK 14

CK 4   CK 14CK 4   CK 14CK 4   CK 14 CK 4   CK 14CK 4   CK 14CK 4   CK 14

CK4 Dose

CK14 Dose

CK4 Control

CK14 Control

CK 4   CK 14CK 4   CK 14CK 4   CK 14 CK 4   CK 14CK 4   CK 14CK 4   CK 14

CK 4   CK 14CK 4   CK 14CK 4   CK 14 CK 4   CK 14CK 4   CK 14CK 4   CK 14

Time	two:	
corals	are	sampled	before	they	display	gross	disease	signs

CK4 Dose

CK14 Dose

CK4 Control

CK14 Control

CK 4   CK 14CK 4   CK 14CK 4   CK 14 CK 4   CK 14CK 4   CK 14CK 4   CK 14

CK 4   CK 14CK 4   CK 14CK 4   CK 14 CK 4   CK 14CK 4   CK 14CK 4   CK 14

CK4 Dose

CK14 Dose

CK4 Control

CK14 Control

CK 4   CK 14CK 4   CK 14CK 4   CK 14 CK 4   CK 14CK 4   CK 14CK 4   CK 14

CK 4   CK 14CK 4   CK 14CK 4   CK 14 CK 4   CK 14CK 4   CK 14CK 4   CK 14

Time	three:	
Hour	22-57,	as	corals	show	gross	disease	signs	they	are	sampled	
along	with	corresponding	control	fragment	and	removed	 from	tank

Hour	22 Hour	60

CK4 Dose

CK14 Dose

CK4 Control

CK14 Control

CK 4   CK 14CK 4   CK 14CK 4   CK 14 CK 4   CK 14CK 4   CK 14CK 4   CK 14

CK 4   CK 14CK 4   CK 14CK 4   CK 14 CK 4   CK 14CK 4   CK 14CK 4   CK 14

CK4 Dose

CK14 Dose

CK4 Control

CK14 Control

CK 4   CK 14CK 4   CK 14CK 4   CK 14 CK 4   CK 14CK 4   CK 14CK 4   CK 14

CK 4   CK 14CK 4   CK 14CK 4   CK 14 CK 4   CK 14CK 4   CK 14CK 4   CK 14

Time	three:	
Remaining	corals	are	sampled	and	removed

Control Dose ControlDose

Hour	0
Hour	10
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Tank Colony SiteInoculant Site Inoculant FinalDiseaseState

CK14D1 B_CK14 CK14 CK14 Dose Diseased

CK14D2 B_CK14 CK14 CK14 Dose Diseased

CK14D3 B_CK14 CK14 CK14 Dose Diseased

CK14H1 B_CK14 CK14 CK14 Control Healthy

CK14H2 B_CK14 CK14 CK14 Control Diseased

CK14H3 B_CK14 CK14 CK14 Control Healthy

CK4D1 B_CK14 CK4 CK14 Dose Diseased

CK4D2 B_CK14 CK4 CK14 Dose Diseased

CK4D3 B_CK14 CK4 CK14 Dose Diseased

CK4H1 B_CK14 CK4 CK14 Control Healthy

CK4H2 B_CK14 CK4 CK14 Control Healthy

CK4H3 B_CK14 CK4 CK14 Control Healthy

CK14D1 B_CK4 CK14 CK4 Dose Healthy

CK14D2 B_CK4 CK14 CK4 Dose Diseased

CK14D3 B_CK4 CK14 CK4 Dose Healthy

CK14H1 B_CK4 CK14 CK4 Control Healthy

CK14H2 B_CK4 CK14 CK4 Control Healthy

CK14H3 B_CK4 CK14 CK4 Control Healthy

CK4D1 B_CK4 CK4 CK4 Dose Diseased

CK4D2 B_CK4 CK4 CK4 Dose Healthy

CK4D3 B_CK4 CK4 CK4 Dose Diseased

CK4H1 B_CK4 CK4 CK4 Control Healthy

CK4H2 B_CK4 CK4 CK4 Control Healthy

CK4H3 B_CK4 CK4 CK4 Control Healthy

CK14D1 G_CK14 CK14 CK14 Dose Diseased

CK14D2 G_CK14 CK14 CK14 Dose Diseased

CK14D3 G_CK14 CK14 CK14 Dose Healthy

CK14H1 G_CK14 CK14 CK14 Control Healthy

CK14H2 G_CK14 CK14 CK14 Control Healthy

CK14H3 G_CK14 CK14 CK14 Control Healthy

CK4D1 G_CK14 CK4 CK14 Dose Healthy

CK4D2 G_CK14 CK4 CK14 Dose Diseased

CK4D3 G_CK14 CK4 CK14 Dose Diseased

CK4H1 G_CK14 CK4 CK14 Control Healthy

CK4H2 G_CK14 CK4 CK14 Control Healthy

CK4H3 G_CK14 CK4 CK14 Control Healthy

CK14D1 G_CK4 CK14 CK4 Dose Diseased

CK14D2 G_CK4 CK14 CK4 Dose Diseased

CK14D3 G_CK4 CK14 CK4 Dose Healthy

CK14H1 G_CK4 CK14 CK4 Control Healthy
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CK14H2 G_CK4 CK14 CK4 Control Healthy

CK14H3 G_CK4 CK14 CK4 Control Healthy

CK4D1 G_CK4 CK4 CK4 Dose Diseased

CK4D2 G_CK4 CK4 CK4 Dose Diseased

CK4D3 G_CK4 CK4 CK4 Dose Diseased

CK4H1 G_CK4 CK4 CK4 Control Healthy

CK4H2 G_CK4 CK4 CK4 Control Healthy

CK4H3 G_CK4 CK4 CK4 Control Healthy

CK14D1 O_CK14 CK14 CK14 Dose Healthy

CK14D2 O_CK14 CK14 CK14 Dose Diseased

CK14D3 O_CK14 CK14 CK14 Dose Healthy

CK14H1 O_CK14 CK14 CK14 Control Healthy

CK14H2 O_CK14 CK14 CK14 Control Healthy

CK14H3 O_CK14 CK14 CK14 Control Healthy

CK4D1 O_CK14 CK4 CK14 Dose Diseased

CK4D2 O_CK14 CK4 CK14 Dose Diseased

CK4D3 O_CK14 CK4 CK14 Dose Diseased

CK4H1 O_CK14 CK4 CK14 Control Diseased

CK4H2 O_CK14 CK4 CK14 Control Healthy

CK4H3 O_CK14 CK4 CK14 Control Healthy

CK14D1 O_CK4 CK14 CK4 Dose Healthy

CK14D2 O_CK4 CK14 CK4 Dose Diseased

CK14D3 O_CK4 CK14 CK4 Dose Healthy

CK14H1 O_CK4 CK14 CK4 Control Healthy

CK14H2 O_CK4 CK14 CK4 Control Healthy

CK14H3 O_CK4 CK14 CK4 Control Healthy

CK4D1 O_CK4 CK4 CK4 Dose Diseased

CK4D2 O_CK4 CK4 CK4 Dose Diseased

CK4D3 O_CK4 CK4 CK4 Dose Diseased

CK4H1 O_CK4 CK4 CK4 Control Healthy

CK4H2 O_CK4 CK4 CK4 Control Healthy

CK4H3 O_CK4 CK4 CK4 Control Healthy

CK14D1 P_CK14 CK14 CK14 Dose Healthy

CK14D2 P_CK14 CK14 CK14 Dose Healthy

CK14D3 P_CK14 CK14 CK14 Dose Healthy

CK14H1 P_CK14 CK14 CK14 Control Healthy

CK14H2 P_CK14 CK14 CK14 Control Healthy

CK14H3 P_CK14 CK14 CK14 Control Healthy

CK4D1 P_CK14 CK4 CK14 Dose Diseased

CK4D2 P_CK14 CK4 CK14 Dose Diseased

CK4D3 P_CK14 CK4 CK14 Dose Diseased
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CK4H1 P_CK14 CK4 CK14 Control Healthy

CK4H2 P_CK14 CK4 CK14 Control Healthy

CK4H3 P_CK14 CK4 CK14 Control Healthy

CK14D1 P_CK4 CK14 CK4 Dose Diseased

CK14D2 P_CK4 CK14 CK4 Dose Diseased

CK14D3 P_CK4 CK14 CK4 Dose Healthy

CK14H1 P_CK4 CK14 CK4 Control Healthy

CK14H2 P_CK4 CK14 CK4 Control Healthy

CK14H3 P_CK4 CK14 CK4 Control Healthy

CK4D1 P_CK4 CK4 CK4 Dose Diseased

CK4D2 P_CK4 CK4 CK4 Dose Diseased

CK4D3 P_CK4 CK4 CK4 Dose Diseased

CK4H1 P_CK4 CK4 CK4 Control Healthy

CK4H2 P_CK4 CK4 CK4 Control Healthy

CK4H3 P_CK4 CK4 CK4 Control Healthy

CK14D1 W_CK14 CK14 CK14 Dose Diseased

CK14D2 W_CK14 CK14 CK14 Dose Healthy

CK14D3 W_CK14 CK14 CK14 Dose Healthy

CK14H1 W_CK14 CK14 CK14 Control Healthy

CK14H2 W_CK14 CK14 CK14 Control Healthy

CK14H3 W_CK14 CK14 CK14 Control Healthy

CK4D1 W_CK14 CK4 CK14 Dose Diseased

CK4D2 W_CK14 CK4 CK14 Dose Diseased

CK4D3 W_CK14 CK4 CK14 Dose Diseased

CK4H1 W_CK14 CK4 CK14 Control Healthy

CK4H2 W_CK14 CK4 CK14 Control Healthy

CK4H3 W_CK14 CK4 CK14 Control Healthy

CK14D1 W_CK4 CK14 CK4 Dose Diseased

CK14D2 W_CK4 CK14 CK4 Dose Healthy

CK14D3 W_CK4 CK14 CK4 Dose Healthy

CK14H1 W_CK4 CK14 CK4 Control Healthy

CK14H2 W_CK4 CK14 CK4 Control Healthy

CK14H3 W_CK4 CK14 CK4 Control Healthy

CK4D1 W_CK4 CK4 CK4 Dose Diseased

CK4D2 W_CK4 CK4 CK4 Dose Diseased

CK4D3 W_CK4 CK4 CK4 Dose Diseased

CK4H1 W_CK4 CK4 CK4 Control Healthy

CK4H2 W_CK4 CK4 CK4 Control Healthy

CK4H3 W_CK4 CK4 CK4 Control Healthy
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Time_diseased Time_survived

37 37

37 37

37 37

N/A 60

50 50

N/A 60

50 50

50 50

22 22

N/A 60

N/A 60

N/A 60

N/A 60

57 57

N/A 60

N/A 60

N/A 60

N/A 60

50 50

N/A 60

22 22

N/A 60

N/A 60

N/A 60

57 57

57 57

NA 60

N/A 60

N/A 60

N/A 60

N/A 60

34 34

34 34

N/A 60

N/A 60

N/A 60

57 57

57 57

N/A 60

N/A 60
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N/A 60

N/A 60

57 57

50 50

22 22

N/A 60

N/A 60

N/A 60

N/A 60

57 57

N/A 60

N/A 60

N/A 60

N/A 60

57 57

34 34

34 34

50 50

N/A 60

N/A 60

N/A 60

37 37

N/A 60

N/A 60

N/A 60

N/A 60

37 37

37 37

22 22

N/A 60

N/A 60

N/A 60

N/A 60

N/A 60

N/A 60

N/A 60

N/A 60

N/A 60

50 50

50 50

34 34
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N/A 60
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N/A 60
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Supplementary Table 2. Mean diversity of bacterial communities associated with groups 

of coral.   

Time, Inoculant, Final disease state Shannon SE Richness SE 

Inoculant, Dose, Diseased 3.83 0.12 400.40 47.77 

Three, Dose, Diseased 4.18 0.19 402.57 21.38 

Two, Dose, Diseased 3.62 0.15 333.42 15.28 

Three, Dose, Healthy 3.16 0.35 326.96 35.85 

Two, Dose, Healthy 3.16 0.39 309.52 41.93 

Inoculant, Control, Healthy 3.09 0.33 279.55 19.63 

One, Control, Healthy 2.13 0.12 224.43 13.47 

Three, Control, Healthy 3.26 0.19 345.90 20.47 

Two, Control, Healthy 3.00 0.13 274.16 12.14 
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