

FEMS Microbiology Ecology

http://mc.manuscriptcentral.com/fems

Complex interactions between potentially pathogenic, opportunistic, and resident bacteria emerge during infection on a reef-building coral.

Journal:	FEMS Microbiology Ecology		
Manuscript ID	FEMSEC-17-02-0075.R2		
Manuscript Type:	Research article		
Date Submitted by the Author:	12-Jun-2017		
Complete List of Authors:	Gignoux-Wolfsohn, Sarah; Rutgers University New Brunswick, Department of Ecology Evolution and Natural Resources Aronson, Felicia; Northeastern University, Marine and Environmental Sciences Vollmer, Steven; Northeastern University, Marine and Environmental Sciences		
Keywords:	Coral Disease, White band disease, Staghorn Coral, Acropora cervicornis, Pathogenesis, Symbiotic microorganisms		
Note: The following files were submitted by the author for peer review, but cannot be converted to PDF. You must view these files (e.g. movies) online.			
Supplementary_Table3.csv Supplementary_Table4.csv			

SCHOLARONE[™] Manuscripts

1		
2 3		
4		
5		
0 7		
8 9	1	Title: Complex interactions between potentially pathogenic, opportunistic, and resident bacteria
10 11	2	emerge during infection on a reef-building coral.
12 13	3	Authors: Sarah A. Gignoux-Wolfsohn ¹ , Felicia M. Aronson ² , and Steven V. Vollmer ²
14 15	4	¹ Department of Ecology, Evolution, & Natural Resources School of Environmental and
16 17	5	Biological Sciences, Rutgers, The State University of New Jersey
18 19	6	² Marine Science Center, Northeastern University, Nahant, Massachusetts, 01908
20 21	7	Running Title: Bacterial interactions during coral infection.
22 23	8	Corresponding Author: Sarah A. Gignoux-Wolfsohn
24 25	9	Department of Ecology, Evolution, & Natural Resources School of Environmental and
26 27	10	Biological Sciences, Rutgers, The State University of New Jersey
28 29	11	14 College Farm Road, New Brunswick, NJ 08901
30 31	12	Telephone: (848) 932-9631
32 33	13	Fax: (732) 932-2587
34 35	14	Email: sarah.gignouxwolfsohn@rutgers.edu
36 37	15	
38	16	
40 41	17	
42 43	18	
40 44 45	19	
43 46 47	20	
47 48	21	
49 50	22	
51 52	23	
53 54		
55 56		1
57 58		
59 60		
00		

24 Abstract

Increased bacterial diversity on diseased corals can obscure disease etiology and complicate our understanding of pathogenesis. To untangle microbes that may cause white band disease signs from microbes responding to disease, we inoculated healthy Acropora cervicornis corals with an infectious dose from visibly diseased corals. We sampled these dosed corals and healthy controls over time for sequencing of the bacterial 16S region. Endozoicomonas were associated with healthy fragments from 4/10 colonies, dominating microbiomes before dosing and decreasing over time only in corals that displayed disease signs, suggesting a role in disease resistance. We grouped disease-associated bacteria by when they increased in abundance (primary vs secondary) and whether they originated in the dose (colonizers) or the previously healthy corals (responders). We found that all primary responders increased in all dosed corals regardless of final disease state and are therefore unnot likely to cause disease signs. In contrast, primary colonizers in the families Pasteurellaceae and Francisellaceae increased solely in dosed corals that ultimately displayed disease signs, and may be infectious foreign bacteria involved in the development of disease signs. Moving away from a static comparison of diseased and healthy bacterial communities, we provide a framework to identify key players in other coral diseases.

2
3
1
4
5
6
7
8
0
9
10
11
12
13
10
14
15
16
17
10
10
19
20
21
22
~~
23
24
25
26
20
21
28
29
30
21
31
32
33
34
35
00
36
37
38
39
10
40
41
42
43
44
15
40
46
47
48
10
43
50
51
52
53
51
54
55
56
57
58
50
59
60

43	Introd	luction

44	Marine invertebrates are home to some of the most widely studied and complex bacterial
45	symbioses. The deep-sea hydrothermal vent tube worms Riftia pachyptila lack mouths or guts,
46	instead acquiring nutrients from a specialized organ containing chemoautotrophic bacteria
47	(Cavanaugh et al., 1981). The bobtail squid, Euprymna scolopes, has also developed a
48	specialized organ for its bacterial symbiont, Vibrio fischeri, allowing it to be bioluminescent
49	(Nyholm & McFall-Ngai, 2004). As we learn more about these mutualistic relationships, we
50	also better understand the continuum that lies between pathogens and beneficial symbionts.
51	Theories posit that some beneficial bacteria may have originally been pathogens, evolving with
52	the host to increase host fitness (Sachs et al., 2011). Recently, the genome of a sulfur-oxidizing
53	beneficial symbiont of deep-sea mussels was found to contain homologs of toxin-encoding
54	virulence genes, complicating our understanding of pathogens and virulence (Sayavedra et al.,
55	2015).
56	The number of described marine diseases and their impacts have increased rapidly in
57	recent years, contributing to the collapse of crucial marine ecosystems (Weil & Rogers, 2011,
58	Burge et al., 2014). This increase in epizootics is likely due in part to changes in marine
59	bacterial-animal relationships as a result of anthropogenic inputs and the changing climate.
60	Coastal marine ecosystems and the surrounding seawater are increasingly saturated with
61	microbes profiting from rising temperatures (Tout et al., 2015, Zaneveld et al., 2016) and
62	increased available nutrients due to both agricultural run-off (Garren & Azam, 2012) and a shift
63	to algal-dominated ecosystems (Haas et al., 2016). This increase in microbial abundance coupled

64 with behavioral and gene-regulatory changes in previously benign bacteria have altered

65 definitions of disease and symbiosis. In order to understand and ultimately control these new

epizootics, we need to examine how the bacterial communities associated with marine animals change, both as a cause of and in response to disease: shifting between beneficial, mutualistic, and pathogenic relationships. White band disease (WBD) is an infectious disease currently decimating populations of the two species of Caribbean Acropora coral (Acropora cervicornis and A. palmata) (Randall & van Woesik, 2015). Acroporids are fast-growing reef-building corals that create habitats for numerous species of fish and invertebrates, including slower-growing species of corals (Gladfelter et al., 1977, Tunnicliffe, 1983). WBD is characterized by a front of necrotic tissue (and sometimes a zone of bleached tissue), which proceeds rapidly from base to tip of the coral colony, leaving behind a band of white skeleton (Gladfelter, 1982). WBD can be transmitted through the water column and by the corallivorous snail Coralliophila abbreviata (Gignoux-Wolfsohn et al., 2012). Multiple studies have confirmed that white band disease signs can be caused by the bacterial fraction of a disease slurry and arrested by the administration of antibiotics, suggesting a bacterial cause of the disease. (Kline & Vollmer, 2011, Sweet et al., 2014). Vibrio charchariae has been shown to elicit WBD signs in A. cervicornis in Puerto Rico (Gil-Agudelo et al., 2006), and a Rickettsiales-like organism, which may be compromising the host, has been associated with both apparently healthy A. cervicornis and A. cervicornis displaying disease signs (Peters et al., 1983). How these and other bacteria contribute to the development of WBD signs and whether there is a single primary WBD pathogen across the Caribbean and through time is still unknown. Previously, Gignoux-Wolfsohn and Vollmer (2015) used 16S gene sequences to find that WBD-associated bacterial communities were significantly different from those of healthy corals. In keeping with studies of other coral diseases, we found that the bacterial communities of corals

89	displaying disease signs were more diverse, with more consistently-associated OTUs than
90	apparently-healthy corals (e.g., Sunagawa et al., 2009, Closek et al., 2014, Roder et al., 2014).
91	The lack of consistent healthy-associated bacteria indicates that other factors may be shaping this
92	microbiome. We also found showed that the site of collection influenced the microbial
93	communities as much as the disease state of the coral-did_:- <u>T</u> the many disease-associated OTUs
94	found aeross among all sites becaome many putative WBD pathogen(s). Bacterial diseases can
95	be caused by a few cells of a single pathogen invading the host tissues (low infectious dose) e.g.
96	(Zwart et al., 2011), a consortium of pathogens that may be sufficient but not necessary to cause
97	disease signs (Lemire et al., 2015), or normally commensal bacteria reaching a threshold, which
98	initiates a switch to pathogenic behavior (Rutherford & Bassler, 2012). Furthermore, commensal
99	bacteria could become pathogenic due to an external environmental trigger (Lesser et al., 2007).
100	The uncertainty around which of these scenarios leads to the infectious white band disease-like
101	signs complicates our ability to determine which of the identified "disease-associated" OTUs
102	may be invading the host tissue and causing the disease signs and which may be responding to
103	the necrosis, host immune response, or secondary metabolites produced by the pathogen(s). We
104	exposed corals to an infectious dose of homogenized tissue from diseased corals and sampled
105	corals as they transitioned at three time points: from 1) apparent health prior to exposure, 2)to
106	apparent health after post exposure to an infectious dose, to the 3) during the development of
107	characteristic WBD signs. By using corals from multiple coral colonies, we were able to better
108	identify resident microbes associated with each colony, and by performing this experiment in
109	controlled tanks we removed the possibility of an environmental trigger of pathogenicity. We
110	examined disease-associated OTUs for consistency across two sites in order to remove the high
111	site variability we had previously found. This controlled infection experiment allowed us to

answer two main questions about the diseased coral microbiome: 1) Where do these disease-associated bacteria originate? And 2) when do they increase in abundance? We expected the final diseased-coral microbiome to be shaped by increased abundances of both bacteria originating in the dose (here referred to as colonizers) and bacteria that were found a priori on the corals (responders) increasing in abundance either before (primary) or after (secondary) development of disease signs. **Materials and Methods** Tank infection experiment An infection experiment was set up in July 2014, using Acropora cervicornis from two sites (CK4 and CK14) 600m apart in Coral Cay, Bocas del Toro, Panama (site). At each site, corals to be inoculated were collected by taking twelve apparently healthy five cm fragments from five colonies (presumed to be distinct genotypes, at least 10 m apart) of A. cervicornis for a total of 10 colonies (colony) and corals to be made into inoculants were collected by taking three replicate five cm fragments from the disease interfaces (or equivalent location) of three colonies exhibiting signs of WBD and from three apparently healthy control colonies. These fragments were brought to the Smithsonian Tropical Research Institute and the fragments to be inoculated were cable-tied to plastic louver. Ten fragments (one fragment from each colony) were and placed in each of 12 closed 50 L tanks (tank) with a powerhead See Fig. S1 for experimental design, 10 fragments (one fragment from each colony) per tank. Corals were sampled as they were placed in tanks (time one) in the following manner: two polyps from the middle of each fragment (this small sample was used so as not to stress the coral fragment) were removed using sterile forceps and placed in 200 µl of guanidine thiocyanate DNA Buffer (Fukami et al., 2004). Forceps were flame sterilized in between corals. Throughout the

experiment, DI water was added to maintain salinity and volume and temperature was measured to ensure consistency across tanks. To create the the 12 inoculants (three doses and three control inoculants from each site,) ,the t-hree replicate fragments from each colony were homogenized by shaking in a falcon tube with sterile glass beads and 15 mL filtered seawater until no tissue remained on the skeleton (Kline & Vollmer, 2011), and Fragments from the same colony were then pooled to create three doses and three control inoculants from each site (inoculant site). Two hundred µl of each inoculant was centrifuged and preserved in 500µl of DNA buffer. Prior to inoculation, corals were lesioned using an airbrush and filtered seawater (Gignoux-Wolfsohn et al., 2012). Six tanks were then inoculated with 30 mL of dose (the dose level of inoculant), three per site (inoculant site), -and six tanks were inoculated with 30 mL of control inoculant (the control level of inoculant), three per site (inoculant site). Corals were then sampled at 10 hours post-inoculation as described above (time two). When dosed corals began to show disease signs (i.e. the white lesion grew to encircle the coral and form the characteristic white band of skeleton) beginning at 22 hours post-inoculation, they were sampled and removed from the experiment along with their corresponding control fragment (time three). Sampling continued in this manner until 60 hours post-inoculation when all remaining corals were sampled (See Fig. S1 for experimental design and sampling). The final disease state of a coral was determined based on whether or not that coral ultimately showed disease signs. For example, even though a sample collected at time two came from a healthy-looking coral, if that coral displayed disease signs at time three, the sample's final disease state was diseased. Forty-three out of 60 corals that were dosed ultimately displayed disease signs., and T two of the 60 control corals died over the course of the experiment and were removed from subsequent analyses

2 3		
4 5		
6 7		
7 8 9	158	(Table S1).
10 11	159	DNA was extracted from samples using the Agencourt DNAdvance bead extraction kit
12 13	160	(Agencourt Bioscience Corporation, Beverly, MA, USA) with the addition of PEB buffer. A
14 15	161	blank DNA extraction was performed with each round. The V6 hyper-variable region of the 16S
16 17	162	gene was chosen as the target due to its short length and high sensitivity to species-level diversity
18 10	163	(Youssef et al., 2009, Barriuso et al., 2011, Caporaso et al., 2012). The V6 region was amplified
20	164	with primers consisting of a region complementary to V6, a unique five base pair barcode, and
22	165	the Illumina sequencing adapter (Gloor et al., 2010):
23 24	166	V6-L [5'ACACTCTTTCCCTACACGACGCTCTTCCGATCTnnnnnCWACGCGARG
25 26	167	AACCTTACC3']
27 28	168	V6-R [5'CGGTCTCGGCATTCCTGCTGAACCGCTCTTCCGATCTnnnnACRACA
29 30	169	CGAGCTGACGAC3']
31 32	170	A separate 40_µl PCR reaction was performed for each sample with a unique combination
33 34	171	of primers: 5_µl each 4_mM primer, 8_µl standard Taq buffer (New England Biolabs, Ipswich,
35 36	172	MA, USA), 0.8_µl dNTPs, 20_µl diH20, 0.5_µl Taq DNA polymerase (NEB) for the following
37	173	cycle: 94°C for 2_m, with 28 cycles of: 94°C for 15_s, 55°C for 15_s, 72°C for 30_s, ending with
30 39	174	72°C for 1_m. A negative control and blank were amplified with each set of reactions.
40 41	175	Concentrations of PCR products were quantified using the Qubit 2.0 fluorometer (Thermo Fisher
42 43	176	Scientific, Waltham, MA) to determine the volume of each product to pool. The pooled PCR
44 45	177	products were then amplified with the following Illumina primers:
46 47	178	OLJ139 [5'AATGATACGGCGACCACCGAGATCTACACTCTTTCCCTACACGA3']
48 49	179	OLJ140 [5'CAAGCAGAAGACGGCATACGAGATCGGTCTCGGCATTCCTGC
50 51	180	TGAAC3'] in a 40_µl reaction: 8_µl Phusion buffer (NEB) 0.8_µl dNTPs, 0.5_µl Phusion
52 53		
54 55		8
56 57		
58 50		
60		

3		
4		
5 6		
7		
8 9	181	HIfidelity Taq (NEB), 20.2_µl diH20, 0.5_µl DNA (previous PCR product), for the following
10 11	182	cycle: 98°C for 2_m, 12 cycles of: 98°C for 1_m, 55°C for 1_m, 72°C for 1_m, and finally 72°C
12 13	183	for 5_m. Final PCR products were cleaned using DNAmpure beads (Agencourt). Concentration
14 15	184	and length were verified using the Agilent 2100 Bioanalyzer system (Agilent, Santa Clara, CA,
16 17	185	USA) and sequenced using paired-end 150 base pair sequencing on an Illumina HiSeq2000.
18 19	186	Bioinformatics
20 21	187	Paired reads were overlapped using FLASH (Magoc & Salzberg, 2011). Sequences were
22 23	188	then demultiplexed, quality filtered, and trimmed using a custom python script available at:
24 25	189	https://github.com/sagw/Python_scripts/blob/master/SD1/SD1_demultiplex.py
26 27	190	Using Qiime 1.9.0, 97% OTUs were picked using the open reference OTU picking method and
28	191	taxonomy assigned using BLAST against the July 2015 SILVA database (Quast et al., 2013).
29 30	192	OTUs that were identified as chloroplasts using BLAST were removed. Chimeras were detected
31 32	193	and removed using UCHIME (Edgar et al., 2011). Further details of bioinformatics can be found
33 34	194	here:
35 36	195	https://github.com/sagw/Notebooks/tree/master/SD1_notebooks.
37 38	196	Statistical Analyses
39 40	197	OTU counts were normalized using the sizefactors method with arithmetic means in the
41 42	198	R package DESeq2 (McMurdie & Holmes, 2014). The significance of the community level
43	199	effects was tested using PERMANOVA of Bray-Curtis dissimilarities (adonis in package Vegan)
45	200	(Jari Oksanen & O'Hara, 2013). Two PERMANOVAS were performed: one using the formula:
40 47	201	"~ colony" for time one samples, and one using the formula: "~ final disease state + inoculant $*$
48 49	202	site * time * inoculant site" for times two and three samples. Site was removed from the model
50 51 52	203	because the main effect and interactions were not significant. Diversity metricsShannon
53 54		
54 55		9

5 6		
7		
8 9	204	diversity and rarefied richness were calculated using Vegan (Jari Oksanen & O'Hara, 2013).
10 11	205	To evaluate changes in abundance of individual OTUs across among main effects and
12 13	206	interactions with the addition of random effects, abundance data for each OTU were fit to
14 15	207	quasipoisson mixed-effects generalized linear models (GLMMPQL in package MASS)
16 17	208	(Venables & Ripley, 2003). GLMMs for time one samples used the fixed-effect formula: " \sim
18 19	209	colony" and the random effect formula: "~1 tank". GLMMs for times two and three samples
20 21	210	used the fixed effect formula: "~ final disease state + site * inoculant * time * inoculant site" and
22	211	the random effect formula: "~1 tank/time". Significance of effects was then determined by type-
23 24 25	212	III ANOVA using the Wald chi-square test (Anova in package Car) (Fox & Weisberg, 2011) and
25 26	213	significantly different OTUs (p-value adjusted by false discovery rate <0.05) were determined
27 28	214	for each main effect and interaction. OTUs were then grouped according to significance of
29 30	215	GLMM terms and post-hoc calculated means and mean abundance of a subset of OTUs was
31 32	216	plotted using ggplot2 (Wickham, 2009).
33 34	217	OTU Group Definitions
35 36	218	We identified colony-specific healthy residents as OTUs that differed significantly by
37 38	219	colony at time one and by final disease state at times two and three, with a higher abundance in
39 40	220	control than dosed diseased corals. The majority of these OTUs belonged to the genus
41 42	221	Endozoicomonas, and so the mean of each OTU identified as Endozoicomonas was calculated
42	222	for each colony and percent <i>Endozoicomonas</i> composition was calculated as a mean of the
44 45	223	percent of the total microbiome for each sample belonging to a given colony.
46 47	224	Secondary OTUs differed significantly by final disease state and were more abundant in
48 49	225	dosed diseased than control corals at time three but not time two. These OTUs were grouped by
50 51	226	family, and means were calculated for dosed corals that showed disease signs at time three
52 53	ļ	
54		10
55 56		10
57		

1		
2		
3 ⊿		
4 5		
6		
7		
8 9	227	soparated by site and inoculant site.
10 11	228	We identified bacteria that are likely involved in the etiology of the disease (primary
12 13	229	OTUs) as those OTUs that increased in abundance on corals that ultimately showed disease signs
14 15	230	prior to the development of these signs. We assume that corals that were exposed to the
16 17	231	infectious dose but did not display disease signs are resistant to the disease (<i>i.e.</i> decrease the
18 19	232	pathogen load or prohibit infection) and may therefore not contain OTUs associated with the
20 21	233	pathology of the disease within their microbiomes. We therefore focused on OTUs that were
22 23	234	more abundant in dosed corals that ultimately displayed disease signs.
24 25	235	We identified OTUs as primary responders if they 1) were absent from the dose; 2) were
26 27	236	present in time-one corals; 3) differed significantly by <i>final disease state</i> in time-two and three
28 29	237	corals; 4) were more abundant in dosed diseased corals than controls; and 5) did not differ
30 21	238	significantly by colony, site, or the interaction of site and inoculant.
32	239	We identified OTUs as primary colonizers if they: 1) were more abundant in the dose
33 34	240	than the control inoculant; 2) differed significantly by <i>final disease state</i> ; 3) were more abundant
35 36	241	in dosed diseased corals than control corals at both times two and three; and 4) did not differ
37 38	242	significantly by <i>colony</i> , <i>site</i> , and the interaction of <i>inoculant</i> and <i>inoculant site</i> .
39 40	243	Secondary OTUs differed significantly by <i>final disease state</i> and were more abundant in
41 42	244	dosed diseased than control corals at time three but not time two. These OTUs were grouped by
43 44	245	family, and means were calculated for dosed corals that showed disease signs at time three
45 46	246	separated by site and inoculant site.
47	247	
48		
49 50		
50 51		
52		
53		
54		
55		11

_____All sequences were deposited to the Sequence Read Archive under the bioproject ID PRJNA387312. Further specifics of analyses can be found here: https://github.com/sagw/Rscripts/tree/master/SD1.

252 Results and Discussion

We identified groups of OTUs that consistently changed in abundance, contributing to the characteristic diseased coral microbiome: a reduction in resident OTUs associated with certain coral colonies (colony-specific residents), an increase in other resident OTUs (primary responders), and colonization by foreign bacteria (primary colonizers). This method of identifying bacterial groups involved in the transition of a marine animal from health to visible disease signs can be applied to other underexplored marine diseases.

259 Community-level effects

Two hundred and seventy-five samples were sequenced yielding 65 413 553 overlapped reads, which resulted in 97 933 OTUs (97% similarity). The bacterial communities on dosed corals became dramatically more diverse as they developed disease signs in terms of Shannon diversity (from 2.13, <u>SE 0.12</u> to 4.18, <u>SE 0.19</u>, ANOVA, F_{1, 272}=52.37, P<0.001) and rarefied richness (from 224.43 to 402.57, ANOVA, F_{1.272}=27.95, P<0.001) (Table S2). This finding is consistent with other studies of coral disease-associated bacterial communities (e.g. (Croquer et al., 2013, Sweet et al., 2013, Gignoux-Wolfsohn & Vollmer, 2015, Meyer et al., 2015)). A large amount (18%) of the variation between bacterial communities of samples collected prior to dosing (at time one) was explained by the significant effect of colony (PERMANOVA, F_{9.81}=1.8, P=0.001, R²=0.18). For samples collected after dosing (times two and three), the main effect of *final disease state*, and the interaction of *timepoint*, *inoculant*, and

FEMS Microbiology Ecology

1 2		
3 4		
5		
6 7		
8 9	271	inoculant site, significantly affected the coral-associated bacterial communities (Table 1).
10 11	272	
12 13	273	Endozoicomonas are colony-specific residents of healthy corals
14 15	274	In contrast to studies of other species of coral, where Endozoicomonas dominate the
16 17	275	microbiomes of all healthy individuals (Apprill et al., 2013) (Bayer et al., 2013) (Yang et al.,
18 19	276	2010, Klaus et al., 2011, Jessen et al., 2013, Roder et al., 2015), reviewed in: (Neave et al.,
20 21	277	2016)), they were dominant residents of only four of the 10 colonies (marked as "High" in Fig.
22 23	278	1) of healthy A. cervicornis, comprising 139 of the 175 OTUs identified as colony-specific
24	279	residents of healthy corals by GLMM (Table S3). Endozoicomonas have been shown to form
26	280	species-specific associations, with different strains found in different species, but they have not
27	281	previously been shown to vary so drastically between among colonies of the same species
29 30	282	(Neave et al., 2016). For these four colonies, Endozoicomonas may be beneficial, since they
31 32	283	were less abundant in corals displaying signs of disease than in healthy controls, and were also
33 34	284	less abundant in samples of these diseased corals collected at time two prior to visual disease
35 36	285	signs (Fig. 2). These Endozoicomonas may only survive in healthy coral tissues; in other species
37 38	286	of coral they have been identified in the endodermal tissues of the host coral (Bayer et al., 2013).
39 40	287	Alternatively, Endozoicomonas may be out-competed by the disease-associated bacteria as the
41	288	coral contracts disease. Our results suggest that Endozoicomonas may help the coral fight off
42	289	infection, as they were more abundant in corals that were exposed to the dose but remained
44 45	290	healthy than in the healthy controls, which were never exposed to the dose (Fig. 2). A recent
46 47	291	study found that removal of Endozoicomonas from the surface mucus layer of corals made corals
48 49	292	more susceptible to bleaching and necrosis, highlighting the importance of Endozoicomonas in
50 51 52 53	293	coral fitness and protecting against foreign bacteria (Glasl et al., 2016). The observed colony-

specificity of Endozoicomonas residents could be due to both the host genetics and the environment. Colonies are likely genetically unique, and a high abundance of Endozoicomonas may be contributing to the disease resistance previously seen in certain genotypes of A. cervicornis (Vollmer & Kline, 2008, Libro & Vollmer, 2016). Colonies are also located in slightly different locations on the reef and Endozoicomonas abundance has been correlated to favorable environmental conditions (Roder et al., 2015). Further investigation into the role Endozoicomonas may be playing in A. cervicornis health and disease resistance will be especially important given the recent finding that Endozoicomonas abundance within Acropora muricatae tissues decreases with increasing temperatures (Lee et al., 2015). Secondary OTUs are not consistent across site

The majority of the 1,906 identified secondary OTUs were neither responders (44 OTUs) nor colonizers (222 OTUs). These OTUs were, therefore, presumed to either have originated in the water or been at undetectable abundances when time one samples were taken. These OTUs appear to contribute the majority of the diversity found in bacterial communities of corals displaying disease signs, but in very low abundances. These low abundances likely, contribute ing to the difficulty in identifying important bacterial groups when comparing the bacterial communities of corals displaying disease signs to those of apparently healthy corals. Contrary to expectations, none of the secondary OTUs were consistent across-among either site of origin of coral or dose. Rather, all 1 906 of these secondary OTUs were also significant for the interaction of "site," "inoculant," "inoculant site," and "timepoint" (Table S3, Table S4). These secondary OTUs are unlikely to be involved in development of disease signs, but are more likely attracted to the nutrient source of the dying coral. We only identified secondary OTUs (that were not unique to individual corals or tanks) that increased in abundance when the dose came from the

1 2 3			
4			
6			
7 8 9	317	other site (<i>e.g.</i> CK4 corals inoculated with CK14 dose). In the dosed corals that developed	
10	210	disease at time three, 1.676 OTUs were more shundant in CKA sorels inequlated with CK14 does	
11 12	510	disease at time tillee, 1 0/0 01 05 were more abundant in CK4 corais mocurated with CK14 dose	
13 14	319	and 230 OTUs were more abundant in CK14 corals inoculated with CK4 dose. <i>Francisellaceae</i>	
15	320	comprised the majority of these secondary OTUs on CK14 corals dosed with CK4 (55 OTUS),	
16 17	321	and had the second highest mean abundance after Methylococcaceae. For CK14 corals dosed	
18 19	322	with CK4, the most abundant family of secondary OTUs with the highest number of OTUs was	
20 21	323	<i>Campylobacteraceae</i> (358) (Fig. 3). Since the <u>The lack of consistency of</u> secondary OTUs were	
22 23	324	not more abundant on corals across dose site and site indicates that, they are unlikely to be	
24 25	325	playing a significant role in disease causation. Rather, this pattern suggests that there is only an	
26 27	326	additionala secondary disturbance of the bacterial community when the disease-associated	
28	327	bacteria are not taken from surrounding corals.	
29 30	328		
31 32	329	Primary responders are potential opportunists	
33 34	330	We classified bacteria that were already present in lower numbers on the healthy corals	
35 36	331	before dosing and responded to the dose by growing more abundant as primary responders.	
37 38	332	Contrary to our expectations and previous studies suggesting coral disease is caused by	
39 40	333	opportunistic pathogenesis of resident bacteria (Chow et al., 2011; Lesser et al., 2007), all 272	
41 42	334	primary responders became more abundant after dosing in all dosed corals regardless of their	
42	335	final disease state (Fig. 4, Table S3). These OTUs, equally abundant in dosed corals that	
44 45	336	remained healthy and dosed corals that displayed disease signs, are unlikely to be the sole cause	
46 47	337	of the disease.	
48 49	338	Primary responders in the phylum Bacteroidetes, which includes families	
50 51 52	339	Flavobacteriaceae (26 OTUs), Cryomorphaceae (22 OTUs), and Saprospiraceae (20 OTUs),	
53 54 55 56 57 58 59		15	

7		
8 9	340	appeared to respond to both the disease dose and the general stress of the tank environment by
10 11	341	increasing in all corals (including controls) at time three (Fig. 4). We previously found many
12 13	342	OTUs belonging to Flavobacteriales (which includes both Flavobacteriaceae and
14 15	343	Cryomorphaceae) consistently associated with WBD-infected corals (Gignoux-Wolfsohn and
16 17	344	Vollmer 2015). Flavobacteriaceae have been associated with many coral diseases across oceans
18 19	345	(e.g. (Apprill et al., 2013; Frias-Lopez et al., 2002; Ng et al., 2015; Roder et al., 2014b)), cause
20 21	346	disease in fish (Starliper 2011), and are part of some healthy marine microbiomes (Apprill et al.,
22	347	2014). Flavobacteriaceae were recently found to be enriched on algae-dominated reefs, which
23 24	348	contain more readily accessible dissolved organic carbon (Haas et al., 2016). Their high
25 26	349	abundance in the closed aquaria, which likely grew increasingly nutrient-rich as corals died, is
27 28	350	consistent with their functioning as copiotrophs; they may be blooming as they consume the
29 30	351	dying coral or the secondary metabolites of other members of the diseased bacterial community.
31 32	352	We previously identified strains of Saprospiraceae associated with both diseased and healthy
33 34	353	corals (Gignoux-Wolfsohn and Vollmer 2015). Members of this family include commonly
35 36	354	found marine bacteria involved in the breakdown of complex carbon molecules, consistent with
37 38	355	their possible response to a dying or stressed coral (Krieg <i>et al.</i> , 2011).
39 40	356	Rather than continuing to increase over time, primary responders belonging to the family
40	357	Alteromonadaceae (24 OTUs) were most abundant at time two, before any corals displayed
42 43	358	disease signs (Fig. 4). These OTUs may grow as an initial response to the introduction of
44 45	359	foreign microbes, possibly as defensive symbionts of the host coral. Alteromonadaceae have
46 47	360	been previously associated with healthy coral larvae (Ceh et al., 2013) and healthy adult corals
48 49	361	(Cardenas et al., 2012), suggesting they can be beneficial symbionts. They are also, however,
50 51	362	more abundant in corals infected with multiple diseases (Frias-Lopez et al., 2002; Gignoux-
52		

2		
4		
5 6		
7		
8 9 10	363	Wolfsohn and Vollmer 2015; Roder et al., 2014a; Roder et al., 2014b; Sunagawa et al., 2009),
10	364	consistent with a role as defensive symbionts. Rhodobacteraceae, the bacterial family most
12 13	365	widely associated with coral diseases (summarized in: (Mouchka et al., 2010) see also:(Cardenas
14 15	366	et al., 2012; Gignoux-Wolfsohn and Vollmer 2015; Ng et al., 2015; Roder et al., 2014a; Roder et
16 17	367	al., 2014b)), contained many primary responders (18 OTUs) responding to the dose not the final
18 19	368	disease state of the coral (Fig. 4). Rhodobacteraceae seem to be important players in health and
20 21	369	disease across-for multiple coral species (Glasl et al., 2016; Mouchka et al., 2010), possibly as
21 22 23 24	370	opportunists or as defensive symbionts, helping the host to fight off infection by foreign bacteria.
	371	Primary colonizers are likely putative primary pathogens
25 26	372	We identified primary colonizers as 265 OTUs that originated in the disease dose and
27 28	373	preferentially colonized corals prior to the development of disease signs, likely after
29 30	374	chemotaxing through the water column towards the host coral and attaching to its surface (Fig. 5,
31 32	375	Table S3). The coral pathogen Vibrio corallilyticus uses the coral metabolite
33 34	376	dimethylsulfoniopropionate to locate potential hosts (Garren et al., 2014); it is possible that the
35 36	377	pathogen(s) may use a similar method of host location. It is interesting, therefore, that we did
37	378	not only identify one species of bacteria that originated in the dose and colonized corals prior to
39 40	379	disease signs, but rather many sometimes distantly related OTUs. This result likely explains the
40 41	380	difficulty in identifying primary pathogens of coral diseases and indicates that there may not be a
42 43	381	single primary pathogen, but a consortium of bacteria that cause disease signs. Evidence that
44 45	382	quorum sensing is important in contraction of WBD provides a possible method for inter-species
46 47	383	communication and infection by a consortium (Certner and Vollmer 2015). The previously
48 49	384	suggested WBD pathogens, Vibrionaceae (one OTU), and Rickettsiaceae (5 OTUs), were not
50 51	385	more abundant in dosed corals that displayed disease signs than those that remained healthy,
52 53		

7		
o 9 10	386	making them unlikely primary pathogens in this experiment (Fig. 5).
11	387	Interestingly, taxonomy did not always dictate where and when OTUs were found. Many
12 13	388	primary colonizers and primary responders were identified as belonging to the families
14 15	389	Flavobacteriaceae and Alteromonadaceae. The 22 Flavobacteriaceae identified as colonizers
16 17	390	again appear to be acting as copiotrophs, and may have been abundant in the dose because they
18 19	391	were primary responders on the corals used to create the dose. In contrast, the 22
20 21	392	Alteromonadaceae identified as primary colonizers followed a different pattern from the
22	393	Alteromonadaceae OTUs in the primary responders group. Instead, their pattern of abundance
23 24	394	was similar to primary colonizer OTUs belonging to other families including
25 26	395	Campylobacteraceae (25 OTUs), Francisellaceae (38 OTUs), and Pasteurellaceae (26 OTUs)-
27 28	396	only colonizing corals prior to the development of disease signs, and proliferating as the disease
29 30	397	progressed (Fig. 5).
31 32	398	The absence of many groups of primary colonizers from corals that were dosed but did
33 34	399	not display disease signs indicates that these OTUs are likely directly involved in the
35 36	400	development of WBD signs (Fig. 5). Members of the Campylobacteraceae family have been
37 38	401	associated with multiple coral diseases including WBD (e.g. Gignoux-Wolfsohn and Vollmer
39 40	402	2015; Roder et al., 2014a; Sunagawa et al., 2009; Sweet and Bythell 2012; Sweet et al., 2013).
40	403	In other systems, Campylobacteraceae are known to be both commensal and zoonotic pathogens
42	404	(Lee and Newell 2006; Stoddard et al., 2005). In contrast, Francisellaceae have not been
44 45	405	previously associated with coral disease, but are common marine bacteria (Duodu et al., 2012),
46 47	406	which can be intracellular pathogens of both Atlantic cod (Wangen et al., 2012) and humans
48 49	407	(Sjostedt 2006) and are also endosymbionts of ciliates (Schrallhammer et al., 2011).
50 51 52	408	Primary colonizers in the family Pasteurellaceae exhibited a pattern of colonization
ეკ		

2 3 4 5		
6 7		
8 9	409	consistent with a strong involvement in disease: these OTUs were very abundant in the dose and
10 11	410	preferentially colonized dosed corals before they showed disease signs with a more dramatic
12 13	411	increase in abundance than any other family (Fig. 5). Pasteurellaceae have not been previously
14 15	412	associated with coral disease, but they are common pathogens of many other animals including
16 17	413	humans (Frey and Kuhnert 2002; Johnson and Rumans 1977) and were recently found to be
18 19	414	enriched on reefs with high algal cover (Haas et al., 2016). One possible explanation for our
20 21	415	identification of <i>Pasteurellaceae</i> , and not <i>V. charchariae</i> behaving like a primary WBD
22	416	pathogen, is that Pasteurellaceae may be an emerging pathogen of Panamanian corals that also
23 24	417	causes WBD-like signs. The increasingly algae-dominated Panamanian reefs may promote new
25 26 27 28	418	coral pathogens that cause macroscopic signs similar to canonical WBD.
	419	While we identified some consistent actors in the diseased coral microbiome, we did not
29 30	420	explain the majority of variation between samples, indicating there are other factors not
31 32	421	examined in this study that shape the coral microbiome. This study used corals displaying
33 34	422	disease signs consistent with WBD from Panama; whether the patterns described here apply to
35 36	423	all corals displaying WBD-like signs across the Caribbean is unknown. We were limited by the
37 38	424	length of the region sequenced and the available databases—as technology and resources
38 39	425	improve, bacterial taxonomy will be better resolved.
41	426	Conclusions
42	427	The diseased coral microbiome is dependent on the pre-existing healthy microbiome, the
44 45	428	disease history of the infected coral, the origin of the disease, and the timing of disease
46 47	429	progression. Our approach allowed us to separate bacteria based on origin and timing of
48 49	430	increased abundance, providing more information than previous culture-independent studies
50 51 52	431	about what bacteria are likely contributing to disease. Our finding that <i>Endozoicomonas</i> are only
53 54 55 56 57 58		19

6 7		
8 9	432	associated with health on certain coral colonies may explain the variation in responses of
10 11	433	individual corals to disease. The discovery that primary responders, likely opportunists, increase
12 13	434	in dosed corals regardless of final disease state negates hypotheses that white band disease on A.
14 15	435	cervicornis is coral diseases arenot caused solely by opportunists. We identified primary
16 17	436	colonizers originating in the infectious dose and were able to closely track their changes in
18 19	437	abundance as corals developed disease signs, identifying Campylobacteraceae, Francisellaceae,
20 21	438	and Pasteurellaceae as the most likely primary pathogens. Our results underscore the
22 23	439	importance of incorporating time into future studies of marine diseases and the need to observe
24 25	440	the behavior of individual bacterial strains rather than summarizing changes in communities only
26	441	by higher-level taxonomy. Our approach can be applied to other marine diseases that do not fit
27 28	442	into a one-pathogen one-disease framework, providing a more holistic understanding of disease
29 30	443	and allowing for the shifting definitions of pathogens within our changing marine climate.
31 32	444	
33 34	445	Funding
35 36	446	This work was supported by a crowd-funding campaign to SGW and FA:
37 38	447	https://experiment.com/projects/what-is-killing-caribbean-corals-investigating-a-devastating-
39 40	448	coral-disease and National Science Foundation funding to SV (NSF OCE-1458158). Collection
40	449	permit was provided by ANAM: SE/A-108-13.
42 43	450	
44 45 46	451	Acknowledgements
40 47 49	452	We thank H. Nelson for help with sample collection; T. Gouhier for help with statistical
40 49 50	453	analyses; E. Holum for help with Bioinformatics; M. Garren, J. Grabowski, E.Weil, R. Certner,
50 51 52	454	and S. Kopac for comments on the manuscript.
53 54		
54 55 56 57 58 59		20

1 2 3		
3 4		
5 6		
7 8 9	455	
10	155	Conflict of interest
11 12	430	
13 14 15	457	The authors declare no conflict of interest.
16	458	References
17 18 19	459	Ainsworth TD, Kramasky-Winter E, Loya Y, Hoegh-Guldberg O, Fine M (2007). Coral disease
20 21	460	diagnostics: what's between a plague and a band? Applied and environmental microbiology 73:
22	461	981-992.
23 24	462	
25 26	463	Ainsworth TD, Krause L, Bridge T, Torda G, Raina JB, Zakrzewski M et al (2015). The coral
27 28	464	core microbiome identifies rare bacterial taxa as ubiquitous endosymbionts. The ISME journal 9:
29 30	465	2261-2274.
31 32	466	
33 34	467	Apprill A, Hughen K, Mincer T (2013). Major similarities in the bacterial communities
35 36	468	associated with lesioned and healthy Fungiidae corals. Environmental microbiology 15: 2063-
37	469	2072.
30 39 40	470	
40	471	Apprill A, Robbins J, Eren AM, Pack AA, Reveillaud J, Mattila D et al (2014). Humpback whale
42 43	472	populations share a core skin bacterial community: towards a health index for marine mammals?
44 45	473	<i>Plos one</i> 9: e90785.
46 47	474	
48 49	475	Aronson RB, Precht WF (2001). White-band disease and the changing face of Caribbean coral
50 51	476	reefs. Hydrobiologia 460: 25-38.
52 53	477	
54 55		21
56		
57 58		
59 60		
00		

2 3		
4 5		
6 7		
8 9	478	Barriuso J, Valverde JR, Mellado RP (2011). Estimation of bacterial diversity using next
10 11	479	generation sequencing of 16S rDNA: a comparison of different workflows. BMC bioinformatics
12 13	480	12: 473.
14 15	481	
16 17	482	Bayer T, Neave MJ, Alsheikh-Hussain A, Aranda M, Yum LK, Mincer T et al (2013). The
18 19	483	Microbiome of the Red Sea Coral Stylophora pistillata is Dominated by Tissue-Associated
20	484	Endozoicomonas Bacteria. Applied and environmental microbiology 79: 4759-4762.
22	485	
23 24	486	Bourne DG, Garren M, Work TM, Rosenberg E, Smith GW, Harvell CD (2009). Microbial
25 26	487	disease and the coral holobiont. Trends in microbiology 17: 554-562.
27 28	488	
29 30	489	Burge CA, Mark Eakin C, Friedman CS, Froelich B, Hershberger PK, Hofmann EE et al (2014).
31 32	490	Climate change influences on marine infectious diseases: implications for management and
33 34	491	society. Annual review of marine science 6: 249-277.
35 36	492	
37 38	493	Caporaso JG, Lauber CL, Walters WA, Berg-Lyons D, Huntley J, Fierer N et al (2012). Ultra-
39 40	494	high-throughput microbial community analysis on the Illumina HiSeq and MiSeq platforms. The
40	495	<i>ISME journal</i> 6: 1621-1624.
42	496	
44 45	497	Cardenas A, Rodruiguez-R LM, Pizarro V, Cadavid LF, Arevalo-Ferro C (2012). Shifts in
46 47	498	bacterial communities of two caribbean reef-building coral species affected by white plague
48 49	499	disease. The ISME journal 6: 502-512.
50 51	500	
52 53		
54 55		22
56 57		
58		
60		

2 3		
4		
6		
7 8 9	501	Casas V, Kline DI, Wegley L, Yu Y, Breitbart M, Rohwer F (2004). Widespread association of a
10 11	502	Rickettsiales-like bacterium with reef-building corals. Environmental microbiology 6: 1137-
12 13	503	1148.
14 15	504	
16 17	505	Cavanaugh CM, Gardiner SL, Jones ML, Jannasch HW, Waterbury JB (1981). Prokaryotic Cells
18 19	506	in the Hydrothermal Vent Tube Worm Riftia pachyptila Jones: Possible Chemoautotrophic
20	507	Symbionts. <i>Science</i> 213: 340-342.
22	508	
23 24 25	509	Ceh J, Van Keulen M, Bourne DG (2013). Intergenerational transfer of specific bacteria in corals
25 26	510	and possible implications for offspring fitness. Microbial ecology 65: 227-231.
27 28 29	511	
29 30	512	Certner RH, Vollmer SV (2015). Evidence for Autoinduction and Quorum Sensing in White
31 32	513	Band Disease-Causing Microbes on Acropora cervicornis. Scientific reports 5: 11134.
32 33 34	514	
35 36	515	Chow J, Tang H, Mazmanian SK (2011). Pathobionts of the gastrointestinal microbiota and
37 38	516	inflammatory disease. <i>Current opinion in immunology</i> 23: 473-480.
39 40	517	
40 41	518	Closek CJ, Sunagawa S, Desalvo MK, Piceno YM, Desantis TZ, Brodie EL et al (2014). Coral
42	519	transcriptome and bacterial community profiles reveal distinct Yellow Band Disease states in
44 45	520	Orbicella faveolata. The ISME journal 8: 2411-2422.
46 47	521	
48 49		
50 51		
52 53		
54 55		23
56 57		
58 59		
60		

FEMS Microbiology Ecology

2 3 4 5 6		
7 8 9	522	Croquer A, Bastidas C, Elliott A, Sweet M (2013). Bacterial assemblages shifts from healthy to
10 11	523	yellow band disease states in the dominant reef coral Montastraea faveolata. Environ Microbiol
12 13	524	<i>Rep</i> 5: 90-96.
14 15	525	
16 17	526	Duodu S, Larsson P, Sjodin A, Forsman M, Colquhoun DJ (2012). The distribution of
18 19 20 21	527	Francisella-like bacteria associated with coastal waters in Norway. Microbial ecology 64: 370-
	528	377.
21 22	529	
23 24	530	Edgar RC, Haas BJ, Clemente JC, Quince C, Knight R (2011). UCHIME improves sensitivity
25 26 27 28 29 30 31	531	and speed of chimera detection. Bioinformatics 27: 2194-2200.
	532	
	533	Fox J, Weisberg S (2011). An {R} Companion to Applied Regression, Second Edition. Sage:
31 32	534	Thousand Oaks CA.
32 33 34 35 36	535	
	536	Frey J, Kuhnert P (2002). RTX toxins in Pasteurellaceae. International journal of medical
37	537	microbiology : IJMM 292: 149-158.
39 40	538	
40 41	539	Frias-Lopez J, Zerkle AL, Bonheyo GT, Fouke BW (2002). Partitioning of Bacterial
42 43	540	Communities between Seawater and Healthy, Black Band Diseased, and Dead Coral Surfaces.
44 45	541	Applied and environmental microbiology 68: 2214-2228.
46 47	542	
48 49	543	Fukami H, Budd AF, Levitan DR, Jara J, Kersanach R, Knowlton N (2004). Geographic
50 51 52	544	Differences in Species Boundaries among Members of the Montatstraea Annularis Complex
53 54 55 56 57 58 59 60		24

545	Based on Molecular and Morphological Markers. Evolution; international journal of organic
FAC	modution 59 . 204 227
547	evolution 30. 324-331.
548	Garren M, Azam F (2012). Corals shed bacteria as a potential mechanism of resilience to organic
549	matter enrichment. The ISME journal 6: 1159-1165.
550	
551	Garren M, Son K, Raina JB, Rusconi R, Menolascina F, Shapiro O et al (2014). A bacterial
552	pathogen uses dimethylsulfonioproprionate as a cue to target heat-stressed corals. The ISME
553	journal 8: 999-1007.
554	
555	Gignoux-Wolfsohn SA, Marks CJ, Vollmer SV (2012). White Band Disease transmission in the
556	threatened coral, Acropora cervicornis. Scientific reports 2: 804.
557	
558	Gignoux-Wolfsohn SA, Vollmer SV (2015). Identification of Candidate Coral Pathogens on
559	White Band Disease-Infected Staghorn Coral. <i>Plos one</i> 10: e0134416.
560	
561	Gil-Agudelo DL, Smith GW, Weil E (2006). The white band disease type II pathogen in Puerto
562	Rico. Revista de Biologica Tropical 54: 59-67.
563	
564	Gladfelter EH, Monahan RK, Gladfelter WB (1978). Growth rates of five reef-building corals in
565	the northeastern Caribbean. Bulletin of Marine Science 28: 728–734.
566	
	25
	23
	 545 546 547 548 549 550 551 553 556 557 558 559 560 561 562 563 564 565 566

567	Gladfelter WB (1982). White-band disease in Acropora palmata: implications for the structure
568	and growth of shallow reefs. Bulletin of Marine Science 32: 639-643.
569	
570	Glasl B, Herndl GJ, Frade PR (2016). The microbiome of coral surface mucus has a key role in
571	mediating holobiont health and survival upon disturbance. The ISME journal.
572	
573	Gloor GB, Hummelen R, Macklaim JM, Dickson RJ, Fernandes AD, Macphee R et al (2010).
574	Microbiome Profiling by Illumina Sequencing of Combinatorial Sequence-Tagged PCR
575	Products. <i>Plos one</i> 5 .
576	
577	Haas AF, Fairoz MFM, Kelly LW, Nelson CE, Dinsdale EA, Edwards RA et al (2016). Global
578	microbialization of coral reefs. <i>Nature Microbiology</i> 1: 16042.
579	
580	Harvell CD, Aronson RB, Baron N, Connell J, Dobson AP, Ellner SP et al (2004). The rising
581	tide of ocean diseases: unsolved problems and research priorities. Frontiers in Ecology and the
582	Environment 2: 375-382.
583	
584	Jari Oksanen FGB, Roeland Kindt, Pierre Legendre, Peter R. Minchin, R. B., O'hara GLS, Peter
585	Solymos, M. Henry H. Stevens and Helene Wagner (2013). vegan: Community Ecology
586	Package. R package version 2.0-9.
587	
	26
	567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587

1 2 3		
4		
6 7		
8 9	588	Jessen C, Villa Lizcano JF, Bayer T, Roder C, Aranda M, Wild C et al (2013). In-situ effects of
10 11	589	eutrophication and overfishing on physiology and bacterial diversity of the red sea coral
12 13	590	Acropora hemprichii. Plos one 8: e62091.
14 15	591	
16 17	592	Johnson RH, Rumans LW (1977). Unusual Infectious Caused by Pasteurella multocida. JAMA
18 19	593	237.
20	594	
22	595	Kimes NE, Johnson WR, Torralba M, Nelson KE, Weil E, Morris PJ (2013). The Montastraea
23 24	596	faveolata microbiome: ecological and temporal influences on a Caribbean reef-building coral in
25 26	597	decline. Environmental microbiology.
27 28	598	
29 30	599	Klaus JS, Janse I, Fouke BW (2011). Coral Black Band Disease Microbial Communities and
31 32	600	Genotypic Variability of the Dominant Cyanobacteria (CD1C11). Bulletin of Marine Science 87:
33 34	601	795-821.
35 36	602	
37 38	603	Kline DI, Kuntz NM, Breitbart M, Knowlton N, Rohwer F (2006). Role of elevated organic
39 40	604	carbon levels and microbial activity in coral mortality. Marine Ecology Progress Series 314:
40 41 42	605	119-125.
42	606	
44 45	607	Kline DI, Vollmer SV (2011). White Band Disease (type I) of endangered caribbean acroporid
46 47	608	corals is caused by pathogenic bacteria. Scientific reports 1: 7.
48 49	609	
50 51		
52 53		
54 55		27
56 57		
58 50		
60		

5 6							
7 8							
9 10	610	Krieg N, Staley J, Brown D, Hedlund B, Paster B, Ward N et al (2011). Family III.					
10 11 12 13 14 15 16 17	611	Saprospiraceae fam. nov. Bergey's manual of systematic bacteriology: 358-370.					
	612						
	613	Kvennefors EC, Eugenia S, Ridgway T, Barnes AC, Hoegh-Guldberg O (2010). Bacterial					
	614	Communities of Two Ubiquitous Great Barrier Reef Corals Reveals Both Site- and Species-					
18 19	615	Specificity of Common Bacterial Associates. Plos one 5.					
20 21	616						
21 22 23	617	Lee M, Newell D (2006). Invited Minireview: Campylobacter in Poultry: Filling an Eological					
24 25	618	Niche. Avian Diseases 50: 1-9.					
25 26 27 28 29 30	619						
	620	Lesser MP, Bythell JC, Gates RD, Johnstone RW, Hoegh-Guldberg O (2007). Are infectious					
	621	diseases really killing corals? Alternative interpretations of the experimental and ecological data.					
31 32	622	Journal of Experimental Marine Biology and Ecology 346: 36-44.					
33 34	623						
35 36	624	Li J, Chen Q, Long LJ, Dong JD, Yang J, Zhang S (2014). Bacterial dynamics within the mucus,					
37 38	625	tissue and skeleton of the coral Porites lutea during different seasons. Scientific reports 4: 7320.					
39 40	626						
41 42	627	Libro S, Vollmer SV (2016). Genetic Signature of Resistance to White Band Disease in the					
42	628	Caribbean Staghorn Coral Acropora cervicornis. Plos one 11: e0146636.					
44 45	629						
46 47	630	Littman RA, Willis BL, Pfeffer C, Bourne DG (2009). Diversities of coral-associated bacteria					
48 49	631	differ with location, but not species, for three acroporid corals on the Great Barrier Reef. FEMS					
50 51	632	microbiology ecology 68: 152-163.					
52 53							
54 55		28					
37 38 39 40 41 42 43 44 45 46 47 48 50 51 52 53 54	626 627 628 629 630 631 632	 Libro S, Vollmer SV (2016). Genetic Signature of Resistance to White Band Disease in the Caribbean Staghorn Coral <i>Acropora cervicornis</i>. <i>Plos one</i> 11: e0146636. Littman RA, Willis BL, Pfeffer C, Bourne DG (2009). Diversities of coral-associated bacteria differ with location, but not species, for three acroporid corals on the Great Barrier Reef. <i>FEM. microbiology ecology</i> 68: 152-163. 					

1 2 3									
4 5									
6									
7 8 9	633								
10 11	634	Love MI, Huber W, Anders S (2014). Moderated estimation of fold change and dispersion for							
12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33	635	RNA-seq data with DESeq2. Genome biology 15: 550.							
	636								
	637	Magoc T, Salzberg SL (2011). FLASH: Fast Length Adjustment of Short Reads to Improve							
	638	Genome Assemblies. Bioinformatics 27: 2957-2963.							
	639								
	640	Mcmurdie PJ, Holmes S (2014). Waste Not, Want Not: Why Rarefying Microbiome Data Is							
	641	Inadmissible. PLos Computational Biolog 10: e1003531.							
	642								
	643	Meyer JL, Gunasekera SP, Scott RM, Paul VJ, Teplitski M (2015). Microbiome shifts and the							
	644	inhibition of quorum sensing by Black Band Disease cyanobacteria. The ISME journal.							
	645								
33 34	646	Mouchka ME, Hewson I, Harvell CD (2010). Coral-associated bacterial assemblages: current							
34 35 36 37 38 39 40 41 42 43	647	knowledge and the potential for climate-driven impacts. Integrative and comparative biology 50:							
	648	662-674.							
	649								
	650	Neave MJ, Apprill A, Ferrier-Pages C & Voolstra CR (2016) Diversity and function of							
	651	prevalent symbiotic marine bacteria in the genus Endozoicomonas. Appl Microbiol							
45	652	Biotechnol 100 : 8315-8324.							
46 47	653								
48 49									
50 51									
52 53									
54 55		29							
56 57									
58									
59 60									

4							
5 6							
7 8							
9 10	654	Neave MJ, Rachmawati R, Xun L, Michell CT, Bourne DG, Apprill A & Voolstra CR (2016)					
11	655	Differential specificity between closely related corals and abundant Endozoicomonas					
12 13 14 15 16 17	656	endosymbionts across global scales. The ISME journal.					
	657						
	658	Ng JC, Chan Y, Tun HM, Leung FC, Shin PK, Chiu JM (2015). Pyrosequencing of the bacteria					
18 19	659	associated with Platygyra carnosus corals with skeletal growth anomalies reveals differences in					
20 21	660	bacterial community composition in apparently healthy and diseased tissues. Frontiers in					
22 23	661	microbiology 6: 1142.					
24 25	662						
26 27	663	Nyholm SV, Mcfall-Ngai MJ (2004). The winnowing: establishing the squid-vibrio symbiosis.					
27 28 29 30 31	664	Nature reviews Microbiology 2: 632-642.					
	665						
31 32	666	Pantos O, Bongaerts P, Dennis PG, Tyson GW, Hoegh-Guldberg O (2015). Habitat-specific					
33 34	667	environmental conditions primarily control the microbiomes of the coral Seriatopora hystrix. The					
35 36 37	668	ISME journal 9: 1916-1927.					
37 38	669						
39 40	670	Peters EC, Oprandy J, Yevich P (1983). Possible Causal Agent of "White Band Disease" in					
41 42	671	Caribbean Acroporid Corals. Journal of Invertebrate Pathology 41 : 394-396.					
43 44	672						
45	673	Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P et al (2013). The SILVA ribosomal					
40 47	674	RNA gene database project: improved data processing and web-based tools. Nucleic acids					
48 49	675	research 41 : D590-596.					
50 51	676						
52 53							
54 55		30					
55 56							
57 58							
59							
60							

1 2 3		
4 5		
6 7		
8 9	677	Roder C, Arif C, Bayer T, Aranda M, Daniels C, Shibl A et al (2014a). Bacterial profiling of
10 11	678	White Plague Disease in a comparative coral species framework. The ISME journal 8: 31-39.
12	679	
14 15	680	Roder C, Arif C, Daniels C, Weil E, Voolstra CR (2014b). Bacterial profiling of White Plague
16 17	681	Disease across corals and oceans indicates a conserved and distinct disease microbiome.
18 19	682	Molecular ecology 23: 965-974.
20 21	683	
22 23	684	Roder C, Bayer T, Aranda M, Kruse M, Voolstra CR (2015). Microbiome structure of the fungid
24 24	685	coral Ctenactis echinata aligns with environmental differences. Molecular ecology 24: 3501-
25 26	686	3511.
27 28	687	
29 30	688	Schrallhammer M, Schweikert M, Vallesi A, Verni F, Petroni G (2011). Detection of a novel
31 32	689	subspecies of Francisella noatunensis as endosymbiont of the ciliate Euplotes raikovi. Microbial
33 34	690	ecology 61: 455-464.
35 36	691	
37 38	692	Sjostedt A (2006). Intracellular survival mechanisms of Francisella tularensis, a stealth
39 40	693	pathogen. Microbes and infection / Institut Pasteur 8: 561-567.
41 42	694	
43 44	695	Starliper CE (2011). Bacterial coldwater disease of fishes caused by <i>Flavobacterium</i>
45	696	psychrophilum. Journal of Advanced Research 2: 97-108.
46 47	697	
48 49		
50 51		
52 53		
54 55		31
56 57		
58 50		
60		

FEMS Microbiology Ecology

5 6		
7 8		
9 10	698	Stoddard R, Gulland F, Atwill E, Lawrence J, Jang S, Conrad P (2005). Salmonella and
11	699	Campylobacter spp. in Northern Elephant Seals, California. Emerging Infectious diseases 11:
13	700	1967-1969.
14 15	701	
16 17	702	Sunagawa S, Desantis TZ, Piceno YM, Brodie EL, Desalvo MK, Voolstra CR et al (2009).
18 19	703	Bacterial diversity and White Plague Disease-associated community changes in the Caribbean
20 21	704	coral Montastraea faveolata. The ISME journal 3: 512-521.
22 23	705	
24 25	706	Sunagawa S, Woodley CM, Medina M (2010). Threatened Corals Provide Underexplored
26 27	707	Microbial Habitats. Plos one 5: e9554.
28	708	
29 30	709	Sweet M, Bythell J (2012). Ciliate and bacterial communities associated with White Syndrome
31 32	710	and Brown Band Disease in reef-building corals. <i>Environmental microbiology</i> 14: 2184-2199.
33 34	711	
35 36	712	Sweet M, Burn D, Croquer A, Leary P (2013). Characterisation of the Bacterial and Fungal
37 38	713	Communities Associated with Different Lesion Sizes of Dark Spot Syndrome Occurring in the
39 40	714	Coral Stephanocoenia interstepta. Plos one 8: e62580.
41 42	715	
43 44	716	Sweet MJ, Croquer A, Bythell JC (2014). Experimental antibiotic treatment identifies potential
45	717	pathogens of white band disease in the endangered Caribbean coral Acropora cervicornis.
46 47	718	Proceedings Biological sciences / The Royal Society 281.
48 49	719	
50 51		
52		
53 54		
55		32
56 57		
58		
59 60		
00		

1 2 3			
4 5			
6 7			
8 9	720	Tout J, Siboni N, Messer LF, Garren M, Stocker R, Webster NS et al (2015). Increased seawater	
10 11	721	temperature increases the abundance and alters the structure of natural Vibrio populations	
12 13	722	associated with the coral Pocillopora damicornis. Frontiers in microbiology 6: 432.	
14 15	723		
16 17	724	Tunnicliffe V (1983). Caribbean staghorn coral populations: pre-Hurricane Allen conditions in	
18 19	725	Discovery Bay, Jamaica. Bulletin of Marine Science 33: 132-151.	
20 21	726		
22 23	727	Vega Thurber R, Willner-Hall D, Rodriguez-Mueller B, Desnues C, Edwards RA, Angly F et al	
24 25	728	(2009). Metagenomic analysis of stressed coral holobionts. Environmental microbiology 11:	
26 27	729	2148-2163.	
28	730		
29 30	731	Venables W, Ripley B (2003). Modern Applied Statistics with S. JSTOR.	
31 32	732		
33 34	733	Vollmer SV, Kline DI (2008). Natural Disease Resistance in Threatened Staghorn Corals. Plos	
35 36	734	one 3: e3718.	
37 38	735		
39 40	736	Wangen IH, Karlsbakk E, Einen AC, Ottem KF, Nylund A, Mortensen S (2012). Fate of	
41 42	737	Francisella noatunensis, a pathogen of Atlantic cod Gadus morhua, in blue mussels Mytilus	
43 44	738	edulis. Diseases of aquatic organisms 98: 63-72.	
45 46	739		
40	740	Weil E (2004). Coral reef diseases in the wider Caribbean. Coral health and disease. Springer.	
40 49	741	pp 35-68.	
50 51	742		
52 53			
54 55		33	
56 57			
58 59			
60			

FEMS Microbiology Ecology

743	Weil E, Rogers CS (2011). Coral Reef Diseases in the Atlantic-Caribbean: 465-491.	
744		
745	Wickham H (2009). ggplot2: elegant graphics for data analysis. Springer Science & Business	
746	Media.	
747		
748	Yang CS, Chen MH, Arun AB, Chen CA, Wang JT, Chen WM (2010). Endozoicomonas	
749	montiporae sp. nov., isolated from the encrusting pore coral Montipora aequituberculata. Int J	
750	Syst Evol Microbiol 60: 1158-1162.	
751		
752	Youssef N, Sheik CS, Krumholz LR, Najar FZ, Roe BA, Elshahed MS (2009). Comparison of	
753	species richness estimates obtained using nearly complete fragments and simulated	
754	pyrosequencing-generated fragments in 16S rRNA gene-based environmental surveys. Applied	
755	and environmental microbiology 75: 5227-5236.	
756		
757	Zaneveld JR, Burkepile DE, Shantz AA, Pritchard CE, Mcminds R, Payet JP et al (2016).	
758	Overfishing and nutrient pollution interact with temperature to disrupt coral reefs down to	
759	microbial scales. <i>Nature communications</i> 7: 11833.	
760		
761	Figure Legends	
762	Fig. 1. Endozoicomonas are colony-specific resident bacteria of healthy corals. a) Mean	
763	abundance of each resident OTU within each colony at time one, black bars denote standard	
764	error. Colonies with greater than 40% of their total microbiome consisting of Endozoicomonas	Comment [SGW1]: Check that this and its not sd or something else?
	34	

at time one are labeled "High." b) Percent of total microbiome for each colony at time one that is identified as Endozoicomonas or other taxa. Fig. 2. Abundance of resident Endozoicomonas in colonies with greater than 40% of their total microbiome consisting of Endozoicomonas at time one (high) in dosed corals times two and three. Y-axis is the difference between dosed corals and control corals at each time point; a negative value denotes a lower abundance in dosed corals than controls, and a positive value denotes a higher abundance in dosed corals than controls. Means were calculated for corals exhibiting different final disease states (diseased or healthy) and then control means were subtracted. Fig. 3. Mean abundance of secondary OTUs belonging to selected families on dosed corals that became diseased at time three. Dosed corals are separated by the site of origin of the dose and the site of origin of the corals. OTUs are grouped by family, and the number of OTUs in each group is noted on the top of the mean abundance bar. Fig. 4. Mean abundance of primary responders belonging to selected families across time. OTUs are grouped by family, and the size of the points denotes how many OTUs belonged to that family. Fig. 5. Mean abundance of primary colonizers belonging to selected families across time. OTUs are grouped by family, and the size of the points denotes how many OTUs belonged to the

FEMS Microbiology Ecology

2 3 4 5 6 7 8 9 10 11		
	787	specified family. Inset is the mean abundance for OTUs in that family in the inoculants (dose
	788	and control). Arrows signify time of inoculation. Error bars denote standard error.
$\begin{array}{c}12\\3\\1\\1\\1\\1\\1\\1\\1\\1\\1\\2\\2\\2\\2\\2\\2\\2\\2\\2$	789	<image/>

Mean abundance

50

a)

Colony 1

Colony 2

Colony 3

Colony 4

Colony 5

Colony 6

Colony 7

Colony 9

Colony 10

Site : CK4 Colony 8

Site : CK14

Ģ

OTU

Mean % abundance

n=5

n=11

n=9

n=10

Ĩ

n=10

Other Endoz

omo

Fig. 1. Endozoicomonas are colony-specific resident bacteria of healthy corals. a) Mean abundance of each

resident OTU within each colony at time one, black bars denote standard error. Colonies with greater than

40% of their total microbiome consisting of Endozoicomonas at time one are labeled "High." b) Percent of

total microbiome for each colony at time one that is identified as Endozoicomonas or other taxa.

282x565mm (300 x 300 DPI)

ScholarOne Support 1-434/964-4100

13 14 15

17 18

20 21

27 28 29

30 31 32

33

34 35 36

37 38 39

40 41 42

43 44

45 46

47

48

49

50 51

19

Fig. 2. Abundance of resident Endozoicomonas in colonies with greater than 40% of their total microbiome consisting of Endozoicomonas at time one (high) in dosed corals times two and three. Y-axis is the difference between dosed corals and control corals at each time point; a negative value denotes a lower abundance in dosed corals than controls, and a positive value denotes a higher abundance in dosed corals than controls. Means were calculated for corals exhibiting different final disease states (diseased or healthy) and then control means were subtracted.

152x183mm (300 x 300 DPI)

Fig. 3. Mean abundance of secondary OTUs belonging to selected families on dosed corals that became diseased at time three. Dosed corals are separated by the site of origin of the dose and the site of origin of the corals. OTUs are grouped by family, and the number of OTUs in each group is noted on the top of the mean abundance bar.

189x154mm (300 x 300 DPI)

Fig. 4. Mean abundance of primary responders belonging to selected families across time. OTUs are grouped by family, and the size of the points denotes how many OTUs belonged to that family.

289x206mm (300 x 300 DPI)

Fig. 5. Mean abundance of primary colonizers belonging to selected families across time. OTUs are grouped by family, and the size of the points denotes how many OTUs belonged to the specified family. Inset is the mean abundance for OTUs in that family in the inoculants (dose and control). Arrows signify time of inoculation. Error bars denote standard error.

309x160mm (300 x 300 DPI)

Table 1. PERMANOVA of Bray-Curtis dissimilarity between samples collected at times two and three.

Tank	Colony	SiteInoculant	Site	Inoculant	FinalDiseaseState
CK14D1	B_CK14	CK14	СК14	Dose	Diseased
CK14D2	B_CK14	CK14	CK14	Dose	Diseased
CK14D3	B_CK14	CK14	CK14	Dose	Diseased
CK14H1	B_CK14	CK14	CK14	Control	Healthy
CK14H2	B CK14	CK14	CK14	Control	Diseased
CK14H3	B_CK14	CK14	CK14	Control	Healthy
CK4D1	B CK14	CK4	CK14	Dose	Diseased
CK4D2	B_CK14	CK4	CK14	Dose	Diseased
CK4D3	B_CK14	CK4	CK14	Dose	Diseased
CK4H1	B_CK14	CK4	CK14	Control	Healthy
CK4H2		СК4	CK14	Control	Healthy
CK4H3	B CK14	СК4	CK14	Control	Healthy
CK14D1		СК14	CK4	Dose	Healthy
CK14D2	B CK4	СК14	CK4	Dose	Diseased
CK14D3	B CK4	СК14	СК4	Dose	Healthy
CK14H1	B CK4	СК14	СК4	Control	Healthy
CK14H2	B CK4	СК14	CK4	Control	Healthy
CK14H3	B CK4	СК14	СК4	Control	Healthy
CK4D1	B CK4	CK4	СК4	Dose	Diseased
CK4D2	B CK4	CK4	СК4	Dose	Healthy
CK4D3	B CK4	CK4	СК4	Dose	Diseased
CK4H1	B CK4	CK4	СК4	Control	Healthy
CK4H2	B CK4	CK4	СК4	Control	Healthy
CK4H3	B CK4	CK4	CK4	Control	Healthy
CK14D1	G CK14	CK14	CK14	Dose	Diseased
CK14D2	G CK14	CK14	CK14	Dose	Diseased
CK14D3	G CK14	CK14	CK14	Dose	Healthy
CK14H1		СК14	CK14	Control	Healthy
CK14H2	G CK14	CK14	CK14	Control	Healthy
CK14H3	G CK14	CK14	CK14	Control	Healthy
CK4D1	G CK14	CK4	CK14	Dose	Healthy
CK4D2	G CK14	CK4	CK14	Dose	Diseased
CK4D3	G CK14	CK4	CK14	Dose	Diseased
CK4H1	G CK14	CK4	CK14	Control	Healthy
CK4H2	G CK14	CK4	CK14	Control	Healthy
CK4H3	G CK14	CK4	CK14	Control	Healthy
CK14D1	G CK4	CK14	CK4	Dose	Diseased
CK14D2	G CK4	CK14	CK4	Dose	Diseased
CK14D3	G CK4	CK14	CK4	Dose	Healthy
CK14H1	G_CK4	CK14	CK4	Control	Healthy
	Tank CK14D1 CK14D2 CK14D3 CK14H1 CK14H2 CK14H3 CK4D1 CK4D2 CK4D3 CK4H1 CK4H2 CK14D1 CK14D2 CK14D3 CK14H1 CK14H2 CK14H3 CK4D1 CK4D2 CK4D3 CK4D1 CK4D2 CK4D3 CK4D1 CK4D2 CK4D3 CK4H1 CK4H2 CK4H3 CK14D1 CK14D2 CK14D3 CK14H1 CK14H2 CK14H2 CK14H3 CK14H1 CK14H2 CK14H3 CK14H1 CK14H2 CK14H3 CK14H1	Tank Colony CK14D1 B_CK14 CK14D2 B_CK14 CK14D3 B_CK14 CK14H1 B_CK14 CK14H2 B_CK14 CK14H2 B_CK14 CK4D1 B_CK14 CK4D2 B_CK14 CK4H3 B_CK14 CK4H1 B_CK14 CK4H2 B_CK14 CK4H3 B_CK14 CK14D1 B_CK4 CK4H2 B_CK4 CK14D1 B_CK4 CK14D1 B_CK4 CK14D2 B_CK4 CK14D3 B_CK4 CK14H1 B_CK4 CK14H1 B_CK4 CK14H1 B_CK4 CK4D1 B_CK4 CK4D1 B_CK4 CK4D2 B_CK4 CK4D1 B_CK4 CK4D2 B_CK4 CK4D1 B_CK4 CK4D2 B_CK4 CK4D3 B_CK4 CK4H1 G_CK14 CK4H2 G_CK14 CK14D1 G_CK14	TankColonySiteInoculantCK14D1 B_{CK14 CK14CK14D2 B_{CK14 CK14CK14D3 B_{CK14 CK14CK14H1 B_{CK14 CK14CK14H2 B_{CK14 CK14CK14H3 B_{CK14 CK14CK4D1 B_{CK14 CK4CK4D2 B_{CK14 CK4CK4H3 B_{CK14 CK4CK4H1 B_{CK14 CK4CK4H2 B_{CK14 CK4CK4H3 B_{CK14 CK4CK14D1 B_{CK4} CK14CK14D2 B_{CK4} CK14CK14D3 B_{CK4} CK14CK14D3 B_{CK4} CK14CK14H1 B_{CK4} CK14CK14H2 B_{CK4} CK14CK14D3 B_{CK4} CK14CK14H1 B_{CK4} CK4CK4D2 B_{CK4} CK4CK4D3 B_{CK4} CK4CK4D1 B_{CK4} CK4CK4D2 B_{CK4} CK4CK4D3 B_{CK4} CK4CK4H1 B_{CK4} CK4CK4H2 B_{CK4} CK4CK4H3 B_{CK14} CK14CK14D1 G_{CK14} CK14CK14D2 G_{CK14} CK14CK14D1 G_{CK14} CK14CK14D2 G_{CK14} CK14CK14D1 G_{CK14} CK14CK14D2 G_{CK14} CK14CK14D1 G_{CK14} CK4CK4D2 G_{CK14} CK4CK4D2 <t< td=""><td>TankColonySiteInoculantSiteCK14D1B_CK14CK14CK14CK14D2B_CK14CK14CK14CK14D3B_CK14CK14CK14CK14H1B_CK14CK14CK14CK14H2B_CK14CK14CK14CK14H3B_CK14CK14CK14CK14H3B_CK14CK4CK14CK4D1B_CK14CK4CK14CK4D2B_CK14CK4CK14CK4H1B_CK14CK4CK14CK4H2B_CK14CK4CK14CK4H1B_CK14CK4CK14CK14D1B_CK4CK14CK4CK14D1B_CK4CK14CK4CK14D2B_CK4CK14CK4CK14D3B_CK4CK14CK4CK14D2B_CK4CK14CK4CK14D2B_CK4CK14CK4CK14D3B_CK4CK14CK4CK14D3B_CK4CK14CK4CK14D1B_CK4CK14CK4CK14D2B_CK4CK4CK4CK4D1B_CK4CK4CK4CK4D2B_CK4CK4CK4CK4D3B_CK4CK4CK4CK4D1B_CK4CK4CK4CK4D2B_CK4CK4CK4CK4D3B_CK4CK4CK4CK4D1B_CK4CK4CK4CK4D2B_CK4CK4CK4CK4D3<</td><td>Tank Colony SiteInoculant Site Inoculant CK14D1 B_CK14 CK14 CK14 Dose CK14D2 B_CK14 CK14 CK14 Dose CK14D3 B_CK14 CK14 CK14 Dose CK14H1 B_CK14 CK14 CK14 Control CK14H1 B_CK14 CK14 CM14 Dose CK4D1 B_CK14 CK14 Control CK4D1 B_CK14 CK4 CK14 Dose CK4D2 B_CK14 CK4 CK14 Dose CK4H1 B_CK14 CK4 CK14 Control CK4H2 B_CK14 CK4 CK14 Control CK4H3 B_CK14 CK4 CK14 Control CK4H3 B_CK14 CK4 CK14 Control CK4H3 B_CK4 CK14 CK4 Dose CK14D2 B_CK4 CK14 CK4 Control CK14D3 B_CK4</td></t<>	TankColonySiteInoculantSiteCK14D1 B_CK14 CK14CK14CK14D2 B_CK14 CK14CK14CK14D3 B_CK14 CK14CK14CK14H1 B_CK14 CK14CK14CK14H2 B_CK14 CK14CK14CK14H3 B_CK14 CK14CK14CK14H3 B_CK14 CK4CK14CK4D1 B_CK14 CK4CK14CK4D2 B_CK14 CK4CK14CK4H1 B_CK14 CK4CK14CK4H2 B_CK14 CK4CK14CK4H1 B_CK14 CK4CK14CK14D1 B_CK4 CK14CK4CK14D1 B_CK4 CK14CK4CK14D2 B_CK4 CK14CK4CK14D3 B_CK4 CK14CK4CK14D2 B_CK4 CK14CK4CK14D2 B_CK4 CK14CK4CK14D3 B_CK4 CK14CK4CK14D3 B_CK4 CK14CK4CK14D1 B_CK4 CK14CK4CK14D2 B_CK4 CK4CK4CK4D1 B_CK4 CK4CK4CK4D2 B_CK4 CK4CK4CK4D3 B_CK4 CK4CK4CK4D1 B_CK4 CK4CK4CK4D2 B_CK4 CK4CK4CK4D3 B_CK4 CK4CK4CK4D1 B_CK4 CK4CK4CK4D2 B_CK4 CK4CK4CK4D3<	Tank Colony SiteInoculant Site Inoculant CK14D1 B_CK14 CK14 CK14 Dose CK14D2 B_CK14 CK14 CK14 Dose CK14D3 B_CK14 CK14 CK14 Dose CK14H1 B_CK14 CK14 CK14 Control CK14H1 B_CK14 CK14 CM14 Dose CK4D1 B_CK14 CK14 Control CK4D1 B_CK14 CK4 CK14 Dose CK4D2 B_CK14 CK4 CK14 Dose CK4H1 B_CK14 CK4 CK14 Control CK4H2 B_CK14 CK4 CK14 Control CK4H3 B_CK14 CK4 CK14 Control CK4H3 B_CK14 CK4 CK14 Control CK4H3 B_CK4 CK14 CK4 Dose CK14D2 B_CK4 CK14 CK4 Control CK14D3 B_CK4

2						
3 ⊿	CK14H2	G_CK4	CK14	CK4	Control	Healthy
5	CK14H3	G_CK4	CK14	CK4	Control	Healthy
6	CK4D1	G CK4	CK4	CK4	Dose	Diseased
7 0	CK4D2	G CK4	CK4	CK4	Dose	Diseased
9	CK4D3	G CK4	CK4	CK4	Dose	Diseased
10	CK4H1	G CK4	CK4	CK4	Control	Healthy
11	CK4H2	G CK4	CK4	CK4	Control	Healthy
12	CK4H3	G CK4	CK4	CK4	Control	Healthy
14	CK14D1	0 CK14	CK14	CK14	Dose	Healthy
15 16	CK14D2	0 CK14	CK14	CK14	Dose	Diseased
17	CK14D3	O CK14	CK14	CK14	Dose	Healthy
18	CK14H1	O CK14	СК14	CK14	Control	, Healthy
19	CK14H2	O CK14	СК14	CK14	Control	, Healthy
20	CK14H3	O CK14	СК14	CK14	Control	, Healthy
22	CK4D1	O CK14	СК4	CK14	Dose	, Diseased
23	CK4D2	O CK14	СК4	CK14	Dose	Diseased
24 25	CK4D3	O CK14	СК4	СК14	Dose	Diseased
26	CK4H1	0 CK14	CK4	CK14	Control	Diseased
27	CK4H2	O CK14	СК4	СК14	Control	Healthy
20 29	CK4H3	O CK14	CK4	СК14	Control	, Healthy
30	CK14D1	О СК4	CK14	СК4	Dose	, Healthy
31	CK14D2	0 CK4	CK14	СК4	Dose	Diseased
33	CK14D3	 О_СК4	CK14	СК4	Dose	Healthy
34	CK14H1	0 CK4	CK14	СК4	Control	Healthy
35 36	CK14H2	0 CK4	CK14	CK4	Control	Healthy
30 37	CK14H3	 О_СК4	CK14	CK4	Control	Healthy
38	CK4D1	0 CK4	CK4	CK4	Dose	Diseased
39 40	CK4D2	0 CK4	CK4	CK4	Dose	Diseased
40	CK4D3	0 CK4	CK4	CK4	Dose	Diseased
42	CK4H1	O CK4	CK4	CK4	Control	Healthy
43 44	CK4H2	O_CK4	CK4	CK4	Control	Healthy
45	CK4H3	0_CK4	CK4	CK4	Control	Healthy
46	CK14D1	_ Р СК14	CK14	CK14	Dose	Healthy
47 48	CK14D2	_ Р_СК14	CK14	CK14	Dose	Healthy
49	CK14D3	P CK14	CK14	CK14	Dose	Healthy
50	CK14H1	_ Р СК14	CK14	CK14	Control	Healthy
51 52	CK14H2	_ Р СК14	CK14	CK14	Control	Healthy
53	CK14H3	_ Р СК14	CK14	CK14	Control	Healthy
54	CK4D1	_ Р_СК14	CK4	CK14	Dose	, Diseased
55 56	CK4D2	_ Р СК14	CK4	CK14	Dose	Diseased
57	CK4D3	_ Р СК14	CK4	CK14	Dose	Diseased
58	-	—				

$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	2						
4^{+} CK4H2P_CK14CK4CK14ControlHealthy6CK4H3P_CK14CK4CK14ControlHealthy7CK14D1P_CK4CK14CK4DoseDiseased9CK14D2P_CK4CK14CK4DoseDiseased10CK14D3P_CK4CK14CK4DoseHealthy11CK14D3P_CK4CK14CK4ControlHealthy12CK14H1P_CK4CK14CK4ControlHealthy13CK14H2P_CK4CK14CK4ControlHealthy14CK14H3P_CK4CK14CK4ControlHealthy15CK4D1P_CK4CK4CK4DoseDiseased17CK4D2P_CK4CK4CK4DoseDiseased18CK4D3P_CK4CK4CK4ControlHealthy21CK4H2P_CK4CK4CK4ControlHealthy22CK4H1P_CK4CK4CK4ControlHealthy23CK4D1W_CK14CK14CK14DoseDiseased24CK14D1W_CK14CK4CK4ControlHealthy23CK4H1W_CK14CK4CK4ControlHealthy24CK4D1W_CK14CK14CK4ControlHealthy25CK4H3W_CK14CK14CK14DoseDiseased26CK14D1W_CK14	3	CK4H1	P CK14	CK4	CK14	Control	Healthy
6CK4H3 P_CK14 CK4CK14ControlHealthy7CK14D1 P_CK4 CK14CK4DoseDiseased9CK14D2 P_CK4 CK14CK4DoseDiseased10CK14D3 P_CK4 CK14CK4DoseHealthy11CK14H1 P_CK4 CK14CK4ControlHealthy12CK14H2 P_CK4 CK14CK4ControlHealthy13CK14H2 P_CK4 CK14CK4ControlHealthy14CK14H3 P_CK4 CK14CK4ControlHealthy15CK4D1 P_CK4 CK4CK4DoseDiseased16CK4D1 P_CK4 CK4CK4DoseDiseased17CK4D2 P_CK4 CK4CK4DoseDiseased18CK4D3 P_CK4 CK4CK4CK4DoseDiseased20CK4H1 P_CK4 CK4CK4ControlHealthy21CK4H2 P_CK4 CK4CK4ControlHealthy22CK4H3 P_CK4 CK4CK4ControlHealthy23CK14D1 W_CK14 CK14CK14DoseDiseased24CK14D3 W_CK14 CK14CK14DoseHealthy25CK14D3 W_CK14 CK14CK14ControlHealthy26CK14D3 W_CK14 CK14CK14DoseDiseased	4 5	CK4H2	_ Р СК14	CK4	CK14	Control	Healthy
7CK14D1P_CK4CK14CK4DoseDiseased9CK14D2P_CK4CK14CK4DoseDiseased10CK14D3P_CK4CK14CK4DoseHealthy11CK14H1P_CK4CK14CK4ControlHealthy12CK14H2P_CK4CK14CK4ControlHealthy13CK14H2P_CK4CK14CK4ControlHealthy14CK14H3P_CK4CK14CK4ControlHealthy16CK4D1P_CK4CK4CK4DoseDiseased17CK4D2P_CK4CK4CK4DoseDiseased18CK4D3P_CK4CK4CK4DoseDiseased20CK4H1P_CK4CK4CK4ControlHealthy21CK4D2P_CK4CK4CK4ControlHealthy22CK4H3P_CK4CK4CK4ControlHealthy23CK14D1W_CK14CK14CK14DoseDiseased24CK14D2W_CK14CK14CK14DoseHealthy25CK14D3W_CK14CK14CK14DoseHealthy26CK14D3W_CK14CK14CK14ControlHealthy27CK14D1W_CK14CK14CK14ControlHealthy28CK14H1W_CK14CK14CK14ControlHealthy30CK14H3W_CK14<	6	CK4H3	_ P_CK14	CK4	СК14	Control	Healthy
8 $CK14D2$ P_{CK1} $CK14$ $CK4$ $CK4$ $Dose$ $Diseased$ 9 $CK14D3$ P_{CK4} $CK14$ $CK4$ $Dose$ $Healthy$ 10 $CK14D3$ P_{CK4} $CK14$ $CK4$ $Dose$ $Healthy$ 11 $CK14H1$ P_{CK4} $CK14$ $CK4$ $Control$ $Healthy$ 13 $CK14H2$ P_{CK4} $CK14$ $CK4$ $Control$ $Healthy$ 14 $CK14H3$ P_{CK4} $CK14$ $CK4$ $Control$ $Healthy$ 15 $CK4D1$ P_{CK4} $CK4$ $CK4$ $Dose$ $Diseased$ 17 $CK4D2$ P_{CK4} $CK4$ $CK4$ $Dose$ $Diseased$ 18 $CK4D3$ P_{CK4} $CK4$ $CK4$ $Dose$ $Diseased$ 20 $CK4H1$ P_{CK4} $CK4$ $CK4$ $Control$ $Healthy$ 21 $CK4H2$ P_{CK4} $CK4$ $CK4$ $Control$ $Healthy$ 22 $CK4H3$ P_{CK4} $CK4$ $CK4$ $Control$ $Healthy$ 23 $CK14D2$ W_{CK14} $CK14$ $CK14$ $Dose$ $Diseased$ 24 $CK14D1$ W_{CK14} $CK14$ $CK14$ $Dose$ $Healthy$ 25 $CK14D2$ W_{CK14} $CK14$ $CK14$ $Dose$ $Healthy$ 26 $CK14H1$ W_{CK14} $CK14$ $CK14$ $Control$ $Healthy$ 23 $CK4H1$ W_{CK14} $CK14$ $CK14$ $Dose$ $Diseased$ 24 </td <td>7</td> <td>CK14D1</td> <td>P CK4</td> <td>CK14</td> <td>СК4</td> <td>Dose</td> <td>Diseased</td>	7	CK14D1	P CK4	CK14	СК4	Dose	Diseased
10CK14D3P_CK4CK14CK4DoseHealthy11CK14H1P_CK4CK14CK4ControlHealthy12CK14H1P_CK4CK14CK4ControlHealthy13CK14H2P_CK4CK14CK4ControlHealthy14CK14H3P_CK4CK14CK4ControlHealthy15CK4D1P_CK4CK4CK4DoseDiseased16CK4D2P_CK4CK4CK4DoseDiseased17CK4D2P_CK4CK4CK4DoseDiseased18CK4D3P_CK4CK4CK4DoseDiseased20CK4H1P_CK4CK4CK4ControlHealthy21CK4H2P_CK4CK4CK4ControlHealthy22CK4H3P_CK4CK4CK4ControlHealthy23CK14D1W_CK14CK14CK14DoseDiseased24CK14D1W_CK14CK14CK14DoseHealthy26CK14D3W_CK14CK14CK14DoseHealthy27CK14H1W_CK14CK14CK14ControlHealthy28CK14H1W_CK14CK14CK14DoseDiseased33CK4D2W_CK14CK4CK14DoseDiseased34CK4D3W_CK14CK4CK14DoseDiseased35CK4D1W_CK14CK4<	8 9	CK14D2	P CK4	CK14	CK4	Dose	Diseased
11CK14P3P_CK4CK14CK4ControlHealthy12CK14H1P_CK4CK14CK4ControlHealthy13CK14H2P_CK4CK14CK4ControlHealthy14CK14H3P_CK4CK14CK4ControlHealthy15CK4D1P_CK4CK4CK4DoseDiseased16CK4D1P_CK4CK4CK4DoseDiseased17CK4D2P_CK4CK4CK4DoseDiseased18CK4D3P_CK4CK4CK4ControlHealthy20CK4H1P_CK4CK4CK4ControlHealthy21CK4H2P_CK4CK4CK4ControlHealthy22CK4H3P_CK4CK4CK4ControlHealthy23CK14D1W_CK14CK14CK14DoseDiseased24CK14D1W_CK14CK14CK14DoseHealthy26CK14D3W_CK14CK14CK14DoseHealthy27CK14H1W_CK14CK14CK14ControlHealthy30CK14H3W_CK14CK14CK14DoseDiseased33CK4D2W_CK14CK4CK14DoseDiseased34CK4D3W_CK14CK4CK14ControlHealthy36CK4H1W_CK14CK4CK14ControlHealthy36CK4H3W_CK14 <t< td=""><td>10</td><td>CK14D3</td><td>P CKA</td><td>CK14</td><td>СКА</td><td>Dose</td><td>Healthy</td></t<>	10	CK14D3	P CKA	CK14	СКА	Dose	Healthy
12CK1411P_CK4CK14CK4ControlHealthy13CK14H2P_CK4CK14CK4ControlHealthy14CK14H3P_CK4CK14CK4ControlHealthy15CK4D1P_CK4CK4CK4DoseDiseased17CK4D2P_CK4CK4CK4DoseDiseased18CK4D3P_CK4CK4CK4DoseDiseased20CK4H1P_CK4CK4CK4ControlHealthy21CK4H2P_CK4CK4CK4ControlHealthy22CK4H3P_CK4CK4CK4ControlHealthy23CK14D1W_CK14CK14CK14DoseDiseased24CK14D2W_CK14CK14CK14DoseHealthy25CK14D3W_CK14CK14CK14DoseHealthy26CK14H3W_CK14CK14CK14ControlHealthy29CK14H2W_CK14CK14CK14ControlHealthy30CK14H3W_CK14CK14CK14DoseDiseased33CK4D2W_CK14CK4CK14DoseDiseased34CK4D3W_CK14CK4CK14ControlHealthy36CK4H3W_CK14CK4CK14ControlHealthy38CK4H3W_CK14CK4CK14ControlHealthy39CK4H3W_CK14 <td>11</td> <td>CK14H1</td> <td></td> <td></td> <td>CKA</td> <td>Control</td> <td>Hoalthy</td>	11	CK14H1			CKA	Control	Hoalthy
13CK14H2P_CK4CK14CK4ControlHealthy14CK14H3P_CK4CK14CK4ControlHealthy15CK4D1P_CK4CK4CK4DoseDiseased17CK4D2P_CK4CK4CK4DoseDiseased18CK4D3P_CK4CK4CK4DoseDiseased19CK4H1P_CK4CK4CK4ControlHealthy20CK4H1P_CK4CK4CK4ControlHealthy21CK4H2P_CK4CK4CK4ControlHealthy22CK4H3P_CK4CK4CK4ControlHealthy23CK14D1W_CK14CK14CK14DoseDiseased24CK14D2W_CK14CK14CK14DoseHealthy25CK14D3W_CK14CK14CK14DoseHealthy26CK14D3W_CK14CK14CK14ControlHealthy29CK14H1W_CK14CK14CK14ControlHealthy30CK14H3W_CK14CK14CK14DoseDiseased33CK4D2W_CK14CK4CK14DoseDiseased34CK4D3W_CK14CK4CK14ControlHealthy36CK4H3W_CK14CK4CK14ControlHealthy38CK4H3W_CK14CK4CK14ControlHealthy39CK4H3W_CK14	12					Control	Hoolthy
15CK14H3P_CK4CK14CK4ControlHealthy16CK4D1P_CK4CK4CK4DoseDiseased17CK4D2P_CK4CK4CK4DoseDiseased18CK4D3P_CK4CK4CK4DoseDiseased19CK4H1P_CK4CK4CK4DoseDiseased20CK4H1P_CK4CK4CK4ControlHealthy21CK4H2P_CK4CK4CK4ControlHealthy22CK4H3P_CK4CK4CK4ControlHealthy23CK14D1W_CK14CK14CK14DoseDiseased24CK14D2W_CK14CK14CK14DoseDiseased25CK14D2W_CK14CK14CK14DoseHealthy26CK14D3W_CK14CK14CK14ControlHealthy27CK14H3W_CK14CK14CK14ControlHealthy28CK14H3W_CK14CK14CK14ControlHealthy30CK14H3W_CK14CK4CK14DoseDiseased33CK4D2W_CK14CK4CK14DoseDiseased34CK4D3W_CK14CK4CK14ControlHealthy37CK4H2W_CK14CK4CK14ControlHealthy38CK4H3W_CK14CK4CK14ControlHealthy39CK14D1W_CK14 <td>13 14</td> <td></td> <td></td> <td>CK14</td> <td>CK4</td> <td>Control</td> <td>пеанну</td>	13 14			CK14	CK4	Control	пеанну
16 $CK4D1$ P_CK4 $CK4$ $CK4$ $Dose$ $Diseased$ 17 $CK4D2$ P_CK4 $CK4$ $CK4$ $Dose$ $Diseased$ 18 $CK4D3$ P_CK4 $CK4$ $CK4$ $Dose$ $Diseased$ 19 $CK4H1$ P_CK4 $CK4$ $CK4$ $Dose$ $Diseased$ 20 $CK4H1$ P_CK4 $CK4$ $CK4$ $Control$ $Healthy$ 21 $CK4H2$ P_CK4 $CK4$ $CK4$ $Control$ $Healthy$ 22 $CK4H3$ P_CCK4 $CK4$ $CK4$ $Control$ $Healthy$ 23 $CK14D1$ W_CK14 $CK14$ $CK14$ $Dose$ $Diseased$ 24 $CK14D1$ W_CK14 $CK14$ $CK14$ $Dose$ $Diseased$ 25 $CK14D2$ W_CK14 $CK14$ $CK14$ $Dose$ $Healthy$ 26 $CK14D3$ W_CK14 $CK14$ $CK14$ $Dose$ $Healthy$ 27 $CK14H1$ W_CK14 $CK14$ $CK14$ $Control$ $Healthy$ 28 $CK14H1$ W_CK14 $CK14$ $CK14$ $Control$ $Healthy$ 30 $CK14H3$ W_CK14 $CK4$ $CK14$ $Dose$ $Diseased$ 33 $CK4D2$ W_CK14 $CK4$ $CK14$ $Dose$ $Diseased$ 34 $CK4D3$ W_CK14 $CK4$ $CK14$ $Dose$ $Diseased$ 35 $CK4H1$ W_CK14 $CK4$ $CK14$ $Control$ $Healthy$ 36 $CK4H3$ W_CK14 CK	15	CK14H3	P_CK4	CK14	CK4	Control	неацпу
17CK4D2P_CK4CK4CK4DoseDiseased18CK4D3P_CK4CK4CK4DoseDiseased19CK4H1P_CK4CK4CK4ControlHealthy20CK4H1P_CK4CK4CK4ControlHealthy21CK4H2P_CK4CK4CK4ControlHealthy22CK4H3P_CK4CK4CK4ControlHealthy23CK14D1W_CK14CK14CK14DoseDiseased24CK14D1W_CK14CK14CK14DoseDiseased25CK14D2W_CK14CK14CK14DoseHealthy26CK14D3W_CK14CK14CK14DoseHealthy27CK14H1W_CK14CK14CK14ControlHealthy28CK14H1W_CK14CK14CK14ControlHealthy29CK14H3W_CK14CK14CK14ControlHealthy30CK14H3W_CK14CK4CK14DoseDiseased33CK4D2W_CK14CK4CK14DoseDiseased34CK4D3W_CK14CK4CK14DoseDiseased35CK4D3W_CK14CK4CK14ControlHealthy36CK4H3W_CK14CK4CK14ControlHealthy38CK4H3W_CK14CK4CK14ControlHealthy39CK14D1W_CK4 </td <td>16</td> <td>CK4D1</td> <td>Р_СК4</td> <td>CK4</td> <td>CK4</td> <td>Dose</td> <td>Diseased</td>	16	CK4D1	Р_СК4	CK4	CK4	Dose	Diseased
18CK4D3P_CK4CK4CK4DoseDiseased19CK4H1P_CK4CK4CK4ControlHealthy21CK4H2P_CK4CK4CK4ControlHealthy22CK4H3P_CK4CK4CK4ControlHealthy23CK14D1W_CK14CK14CK14DoseDiseased24CK14D1W_CK14CK14CK14DoseDiseased25CK14D2W_CK14CK14CK14DoseHealthy26CK14D3W_CK14CK14CK14DoseHealthy27CK14H1W_CK14CK14CK14ControlHealthy28CK14H1W_CK14CK14CK14ControlHealthy29CK14H2W_CK14CK14CK14ControlHealthy30CK14H3W_CK14CK4CK14DoseDiseased33CK4D2W_CK14CK4CK14DoseDiseased34CK4D3W_CK14CK4CK14DoseDiseased35CK4H1W_CK14CK4CK14ControlHealthy36CK4H2W_CK14CK4CK14ControlHealthy37CK4H2W_CK14CK4CK14ControlHealthy38CK4H3W_CK14CK4CK14ControlHealthy39CK14D1W_CK4CK14Ch14ControlHealthy	17	CK4D2	P_CK4	CK4	CK4	Dose	Diseased
19 20CK4H1P_CK4CK4CK4ControlHealthy21CK4H2P_CK4CK4CK4ControlHealthy22CK4H3P_CK4CK4CK4ControlHealthy23CK14D1W_CK14CK14CK14DoseDiseased24CK14D1W_CK14CK14CK14DoseHealthy24CK14D2W_CK14CK14CK14DoseHealthy26CK14D3W_CK14CK14CK14DoseHealthy27CK14H1W_CK14CK14CK14ControlHealthy28CK14H1W_CK14CK14CK14ControlHealthy29CK14H3W_CK14CK14CK14ControlHealthy30CK14H3W_CK14CK4CK14DoseDiseased33CK4D1W_CK14CK4CK14DoseDiseased34CK4D3W_CK14CK4CK14ControlHealthy37CK4H2W_CK14CK4CK14ControlHealthy38CK4H3W_CK14CK4CK14ControlHealthy39CK14D1W_CK4CK14CK14ControlHealthy	18 10	CK4D3	P_CK4	CK4	CK4	Dose	Diseased
21CK4H2P_CK4CK4CK4ControlHealthy22CK4H3P_CK4CK4CK4ControlHealthy23CK14D1W_CK14CK14CK14DoseDiseased24CK14D1W_CK14CK14CK14DoseDiseased25CK14D2W_CK14CK14CK14DoseHealthy26CK14D3W_CK14CK14CK14DoseHealthy27CK14H1W_CK14CK14CK14ControlHealthy28CK14H1W_CK14CK14CK14ControlHealthy29CK14H2W_CK14CK14CK14ControlHealthy30CK14H3W_CK14CK14CK14DoseDiseased31CK4D1W_CK14CK4CK14DoseDiseased33CK4D2W_CK14CK4CK14DoseDiseased34CK4D3W_CK14CK4CK14ControlHealthy37CK4H1W_CK14CK4CK14ControlHealthy38CK4H3W_CK14CK4CK14ControlHealthy39CK14D1W_CK4CK14ControlHealthy	20	CK4H1	P_CK4	CK4	CK4	Control	Healthy
22CK4H3P_CK4CK4CK4ControlHealthy23CK14D1W_CK14CK14CK14DoseDiseased24CK14D1W_CK14CK14CK14DoseDiseased25CK14D2W_CK14CK14CK14DoseHealthy26CK14D3W_CK14CK14CK14DoseHealthy27CK14H1W_CK14CK14CK14ControlHealthy28CK14H1W_CK14CK14CK14ControlHealthy29CK14H2W_CK14CK14CK14ControlHealthy30CK14H3W_CK14CK14CK14ControlHealthy31CK4D1W_CK14CK4CK14DoseDiseased33CK4D2W_CK14CK4CK14DoseDiseased34CK4D3W_CK14CK4CK14ControlHealthy37CK4H1W_CK14CK4CK14ControlHealthy38CK4H3W_CK14CK4CK14ControlHealthy39CK14D1W_CK4CK14ControlHealthy	21	CK4H2	P_CK4	CK4	CK4	Control	Healthy
23 24CK14D1W_CK14CK14CK14DoseDiseased25 26CK14D2W_CK14CK14CK14DoseHealthy26 27 28CK14D3W_CK14CK14CK14DoseHealthy27 28 29CK14H1W_CK14CK14CK14ControlHealthy29 30 31 31 32CK14H2W_CK14CK14CK14ControlHealthy30 31 32 33 34 34 	22	CK4H3	P_CK4	CK4	CK4	Control	Healthy
25CK14D2W_CK14CK14CK14DoseHealthy26CK14D3W_CK14CK14CK14DoseHealthy27CK14H1W_CK14CK14CK14ControlHealthy28CK14H1W_CK14CK14CK14ControlHealthy29CK14H2W_CK14CK14CK14ControlHealthy30CK14H3W_CK14CK14CK14ControlHealthy31CK4D1W_CK14CK4CK14DoseDiseased33CK4D2W_CK14CK4CK14DoseDiseased34CK4D3W_CK14CK4CK14DoseDiseased36CK4H1W_CK14CK4CK14ControlHealthy37CK4H2W_CK14CK4CK14ControlHealthy38CK4H3W_CK14CK4CK14ControlHealthy39CK14D1W_CK4CK14CK14ControlHealthy	23 24	CK14D1	W_CK14	СК14	CK14	Dose	Diseased
26CK14D3W_CK14CK14CK14DoseHealthy27CK14H1W_CK14CK14CK14ControlHealthy28CK14H1W_CK14CK14CK14ControlHealthy29CK14H2W_CK14CK14CK14ControlHealthy30CK14H3W_CK14CK14CK14ControlHealthy31CK4D1W_CK14CK4CK14DoseDiseased32CK4D1W_CK14CK4CK14DoseDiseased33CK4D2W_CK14CK4CK14DoseDiseased34CK4D3W_CK14CK4CK14DoseDiseased36CK4H1W_CK14CK4CK14ControlHealthy38CK4H3W_CK14CK4CK14ControlHealthy39CK14D1W_CK4CK14CK14DoseDiseased	25	CK14D2	W_CK14	СК14	СК14	Dose	Healthy
27CK14H1W_CK14CK14CK14ControlHealthy29CK14H2W_CK14CK14CK14ControlHealthy30CK14H3W_CK14CK14CK14ControlHealthy31CK4D1W_CK14CK4CK14DoseDiseased32CK4D2W_CK14CK4CK14DoseDiseased33CK4D2W_CK14CK4CK14DoseDiseased34CK4D3W_CK14CK4CK14DoseDiseased36CK4H1W_CK14CK4CK14ControlHealthy37CK4H2W_CK14CK4CK14ControlHealthy38CK4H3W_CK14CK4CK14ControlHealthy39CK14D1W_CK4CK14CK4DoseDiseased	26	CK14D3	W_CK14	СК14	CK14	Dose	Healthy
29CK14H2W_CK14CK14CK14ControlHealthy30CK14H3W_CK14CK14CK14ControlHealthy31CK4D1W_CK14CK4CK14DoseDiseased32CK4D2W_CK14CK4CK14DoseDiseased33CK4D2W_CK14CK4CK14DoseDiseased34CK4D3W_CK14CK4CK14DoseDiseased35CK4H1W_CK14CK4CK14ControlHealthy36CK4H2W_CK14CK4CK14ControlHealthy37CK4H2W_CK14CK4CK14ControlHealthy38CK4H3W_CK14CK4CK14ControlHealthy39CK14D1W_CK4CK14CK4DoseDiseased	27	CK14H1	W_CK14	СК14	СК14	Control	Healthy
30CK14H3W_CK14CK14CK14ControlHealthy31CK4D1W_CK14CK4CK14DoseDiseased32CK4D2W_CK14CK4CK14DoseDiseased33CK4D2W_CK14CK4CK14DoseDiseased34CK4D3W_CK14CK4CK14DoseDiseased35CK4H1W_CK14CK4CK14ControlHealthy36CK4H2W_CK14CK4CK14ControlHealthy37CK4H2W_CK14CK4CK14ControlHealthy38CK4H3W_CK14CK4CK14ControlHealthy39CK14D1W_CK4CK14CK4DoseDiseased	29	CK14H2	W_CK14	CK14	СК14	Control	Healthy
31 32CK4D1W_CK14CK4CK14DoseDiseased33CK4D2W_CK14CK4CK14DoseDiseased34CK4D3W_CK14CK4CK14DoseDiseased35CK4H1W_CK14CK4CK14DoseDiseased36CK4H1W_CK14CK4CK14ControlHealthy37CK4H2W_CK14CK4CK14ControlHealthy38CK4H3W_CK14CK4CK14ControlHealthy39CK14D1W_CK4CK14CK4DoseDiseased	30	CK14H3	W_CK14	CK14	СК14	Control	Healthy
33CK4D2W_CK14CK4CK14DoseDiseased34CK4D3W_CK14CK4CK14DoseDiseased35CK4H1W_CK14CK4CK14ControlHealthy37CK4H2W_CK14CK4CK14ControlHealthy38CK4H3W_CK14CK4CK14ControlHealthy39CK14D1W_CK4CK14CK4DoseDiseased	31 32	CK4D1	W_CK14	CK4	СК14	Dose	Diseased
34 35 36CK4D3W_CK14CK4CK14DoseDiseased36 37CK4H1W_CK14CK4CK14ControlHealthy37 	33	CK4D2	W_CK14	CK4	СК14	Dose	Diseased
35 36CK4H1W_CK14CK4CK14ControlHealthy37CK4H2W_CK14CK4CK14ControlHealthy38CK4H3W_CK14CK4CK14ControlHealthy39CK14D1W_CK4CK14CK4DoseDiseased	34	CK4D3	W_CK14	CK4	СК14	Dose	Diseased
37CK4H2W_CK14CK4CK14ControlHealthy38CK4H3W_CK14CK4CK14ControlHealthy39CK14D1W_CK4CK14CK4DoseDiseased	35 36	CK4H1	W_CK14	CK4	СК14	Control	Healthy
38CK4H3W_CK14CK4CK14ControlHealthy39CK14D1W_CK4CK14CK4DoseDiseased	37	CK4H2	W_CK14	CK4	СК14	Control	Healthy
39 CK14D1 W CK4 CK14 CK4 Dose Diseased	38	CK4H3	W_CK14	CK4	СК14	Control	Healthy
40 $CKI4DI$ W_{CK4} $CKI4$ $CK4$ $D03C$ $D15Cd3Cd$	39 40	CK14D1	W_CK4	CK14	СК4	Dose	Diseased
41 CK14D2 W_CK4 CK14 CK4 Dose Healthy	41	CK14D2	W_CK4	CK14	CK4	Dose	Healthy
42 CK14D3 W_CK4 CK14 CK4 Dose Healthy	42	CK14D3	W_CK4	CK14	CK4	Dose	Healthy
45 CK14H1 W_CK4 CK14 CK4 Control Healthy	43 44	CK14H1	W_CK4	CK14	CK4	Control	Healthy
45 CK14H2 W_CK4 CK14 CK4 Control Healthy	45	CK14H2	W_CK4	CK14	CK4	Control	Healthy
46 CK14H3 W_CK4 CK14 CK4 Control Healthy	46	CK14H3	W_CK4	CK14	СК4	Control	Healthy
47 CK4D1 W_CK4 CK4 CK4 Dose Diseased	47 48	CK4D1	W_CK4	CK4	CK4	Dose	Diseased
49 CK4D2 W_CK4 CK4 CK4 Dose Diseased	49	CK4D2	W_CK4	CK4	CK4	Dose	Diseased
⁵⁰ CK4D3 W_CK4 CK4 CK4 Dose Diseased	50	CK4D3	W_CK4	CK4	CK4	Dose	Diseased
51 CK4H1 W_CK4 CK4 CK4 Control Healthy	51 52	CK4H1	W_CK4	CK4	CK4	Control	Healthy
53 CK4H2 W_CK4 CK4 CK4 Control Healthy	53	CK4H2	W_CK4	CK4	CK4	Control	Healthy
54 CK4H3 W CK4 CK4 CK4 Control Healthy	54	CK4H3	W CK4	CK4	CK4	Control	Healthy
55 — 56	55 56		—				-

2			
3	Time diseased	Time survived	
4 5	-	37	37
6		37	37
7		37 2 7	27
8		37	37
9	N/A		60
10		50	50
12	N/A		60
13		50	50
14		50	50
15		22	22
10	N/A		60
18	N/A		60
19			60
20	N/A		60
21	N/A		60
22		57	57
24	N/A		60
25	N/A		60
26	N/A		60
27	N/A		60
20 29		50	50
30	N/A		60
31		22	22
32	NI / A	22	60
33 34			00
35	N/A		60
36	N/A		60
37		57	57
38 30		57	57
40	NA		60
41	N/A		60
42	N/A		60
43 14	N/A		60
45	N/A		60
46	,	34	34
47		34	3/
48 40	NI / A	54	54
49 50			60
51	N/A		60
52	N/A		60
53		57	57
54 55		57	57
55 56	N/A		60
57	N/A		60
58			
59 60			
00			

1			
2			
3	N/A		60
4			60
5	N/A		00
7		57	57
8		50	50
9		22	22
10	N/A		60
11	N/A		60
12	N/A		60
13			60
15	N/A		80
16		57	57
17	N/A		60
18	N/A		60
19 20	N/A		60
20 21	N/A		60
22		57	57
23		57	57
24		34	34
25		34	34
26 27		50	50
27	N/A		60
20	N/A		60
30	, Ν/Δ		60
31		27	27
32		57	57
33	N/A		60
34 35	N/A		60
36	N/A		60
37	N/A		60
38		37	37
39		37	37
40 41		22	22
42	NI / A	22	
43	N/A		60
44	N/A		60
45	N/A		60
46	N/A		60
47 48	N/A		60
40	N/A		60
50	N/A		60
51			
52	N/A		bU
53	N/A		60
54 55		50	50
55 56		50	50
57		34	34
58		-	-

1			
2			
3	N/A		60
4	N/A		60
5 6			60
7	N/A		60
8		57	57
9		57	57
10	N/A		60
11	N/A		60
12	N/A		60
14	N/A		60
15		F7	55
16		57	57
17		34	34
18		34	34
20	N/A		60
21	N/A		60
22	N/A		60
23	,	37	37
24	NI / A	3,	60
25 26	N/A		60
27	N/A		60
28	N/A		60
29	N/A		60
30	N/A		60
31		34	34
33		50	50
34		22	22
35	NI / A	EE.	60
36	N/A		60
37	N/A		60
30 39	N/A		60
40		57	57
41	N/A		60
42	N/A		60
43	N/A		60
44 45	N/A		60
46			60
47	N/A	50	50
48		50	50
49		34	34
50 51		22	22
52	N/A		60
53	N/A		60
54	N/A		60
55	,.		
56 57			
57 58			
~~			

of coral.						
Time, Inoculant, Final disease state	Shannon	SE	Richness	SE		
Inoculant, Dose, Diseased	3.83	0.12	400.40	47.77		
Three, Dose, Diseased	4.18	0.19	402.57	21.38		
Two, Dose, Diseased	3.62	0.15	333.42	15.28		
Three, Dose, Healthy	3.16	0.35	326.96	35.85		
Two, Dose, Healthy	3.16	0.39	309.52	41.93		
Inoculant, Control, Healthy	3.09	0.33	279.55	19.63		
One, Control, Healthy	2.13	0.12	224.43	13.47		
Three, Control, Healthy	3.26	0.19	345.90	20.47		
Two, Control, Healthy	3.00	0.13	274.16	12.14		

Supplementary Table 2. Mean diversity of bacterial communities associated with groups of coral.

ScholarOne Support 1-434/964-4100