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1.  INTRODUCTION

Tropical coral reefs are among the most important
ecosystems on the planet because of both their intrin-
sic ecological value as well as the services they pro-
vide to humans (Costanza et al. 1997). Coral reefs are

now degrading at an alarming rate (Spalding &
Brown 2015, Hughes et al. 2018), jeopardizing these
ecosystem services (Aronson & Precht 2001, Hughes
et al. 2003, Hoegh-Guldberg et al. 2007, Wild et al.
2011) and threatening the extinction of a large part of
Earth’s biodiversity (Carpenter et al. 2008, Veron et
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al. 2009, Glynn 2011). During the summer of 2014,
numerous bleaching alerts were issued in response
to anomalously warm sea surface temperatures (SSTs)
in Florida, USA (NOAA 2014a,b). This followed an
unusually warm winter and spring (Manzello 2015),
and by the early fall, many stony corals, zoanthids,
and octocorals off southeast Florida had bleached,
resulting in the worst regional bleaching episode
since 1997−1998 (Manzello 2015). In addition to
extensive coral bleaching (Manzello 2015), there
were numerous reports of coral disease throughout
the region, including black-band disease (Lewis et
al. 2017) and the recently described outbreaks of
white plague or stony coral tissue loss disease (Precht
et al. 2016, Walton et al. 2018). During this time, an
outbreak of white-band disease (WBD) was observed
on a community of Acropora cervicornis being moni-
tored off northern Miami Beach in Miami-Dade
County, Florida. To document this disease outbreak
and compare it to other instances of WBD, we moni-
tored the progression of the disease and examined
diseased corals using both histopathology and next-
generation bacterial 16S gene sequencing. This
multi-pronged approach allowed us to not only de -
scribe this outbreak and link it to observed thermal
anomalies, but also explore some of the inconsisten-
cies found in previous studies of WBD.

WBD was first described in 1976 in St. Croix by
Dr. William Gladfelter (Gladfelter et al. 1977), who
noted a rapidly-spreading sloughing of A. palmata
tissue (Gladfelter 1982). Signs of WBD are sloughing
coral tissue, which leaves single or multifocal bands
of ex posed white skeleton on otherwise healthy-
looking Acropora spp. (A. palmata, A. cervicornis,
and their hybrid A. prolifera) branches (Gladfelter
et al. 1977, Peters et al. 1983). The tissue loss pro-
gresses up to a few mm per day from base to tip,
leaving white skeletons that are quickly overgrown
by turf algae. After a decade of epizootics, popula-
tions of acroporids have undergone catastrophic
declines across the entire Caribbean and Western
Atlantic (Bak & Criens 1981, Knowlton et al. 1981,
Van Duyl 1985, Jaap et al. 1988, Bythell & Sheppard
1993, Sheppard 1993, Precht & Aronson 1997,
Williams & Bunkley-Williams 2000, Bythell et al.
2004, Aronson & Precht 2016).

Recent reports have described at least 4 types
of ‘white’ diseases in A. cervicornis, including
shut-down reaction (Antonius 1977), WBD type I
(Peters et al. 1983), WBD type II (Ritchie & Smith
1998), and rapid tissue loss (Miller et al. 2014), fur-
ther confounding the terminology (Rogers 2010,
Sheridan et al. 2013). In all cases, the visible white

band is due to tissue death and exfoliation, not
bleaching. Because the distinctions among these
diseased states in field surveys are highly ambigu-
ous, we have used the general term WBD. It
has become evident during the last 4 decades that
WBD epizootics have been the primary cause of
Acropora spp. mortality in the Caribbean and
western Atlantic (Aronson & Precht 2001, 2016,
Bythell et al. 2004, Rogers 2009, Randall & van
Woesik 2015), including Florida (Shinn & Wicklund
1989, ABRT 2005). This disease is partially respon-
sible for the listing of the Caribbean acroporids
as threatened on the US Endangered Species List
and as Cri tically Endangered on the IUCN Red
List (Antonius 1994a,b, Green & Bruckner 2000,
Precht et al. 2002, 2004, Carpenter et al. 2008,
Aronson et al. 2008a,b). This is not to say that
acroporid corals have been spared the effects of
local anthropo genic stressors, nor does it rule out
the involvement of WBD in compound or complex
mortality processes. However, WBD has been ob -
served under a wider variety of conditions than
those in which acute local impacts can be impli-
cated as the primary cause of acroporid decline
(Aronson & Precht 2001).

Transmission of WBD signs has been demonstrated
numerous times, suggesting that the disease can be
caused by a biotic infectious agent. Demonstrated
modes of transmission include direct contact (Vollmer
& Kline 2008), through the water column (Gignoux-
Wolfsohn et al. 2012, Precht & Vollmer 2013), and
through contact with suspected biological vectors
(Williams & Miller 2005, Gignoux-Wolfsohn et al.
2012, Certner et al. 2017). However, WBD signs are
not always transmissible (e.g. Smith & Thomas
2008), and spread does not follow contagious disease
models (Muller & van Woesik 2012).

Infectious agents across several bacterial taxa have
been suggested as potential WBD pathogens, includ-
ing large bacterial aggregates, Vibrio charchariae/
V. harveyi, (Ritchie & Smith 1998, Gil-Agudelo et
al. 2006), Bacillus sp., Lactobacillus suebicus (Sweet
et al. 2014), and a Rickettsiales-like organism (RLO)
(Casas et al. 2004). Recent studies using next-gener-
ation sequencing to characterize WBD-associated
bac terial communities have suggested that the dis-
ease may be caused by multiple pathogens, either a
group of related infectious or noninfectious microbial
pathogens (Gignoux-Wolfsohn et al. 2017) or a loose
consortium that varies with host and environmental
circumstances (Gignoux-Wolfsohn & Vollmer 2015,
Peters 2015), likely regulated by quorum sensing
(Certner & Vollmer 2018). This suggests that WBD
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could belong to a class of coral ailments that share
a derangement of healthy coral microbiomes (Sweet
& Bulling 2017, Zaneveld et al. 2017). In addition,
histophagous ciliates have been associated with
WBD, although their role in tissue loss remains un -
clear (Sweet et al. 2014).

Sokolow (2009) suggested that numerous environ-
mental factors associated with global climate change
may also play an increasing role in coral disease
outbreaks. These climate variables likely alter coral
microbiome structure and epidemiology by influ-
encing pathogenic microorganism growth rates, trans -
mission, virulence, and host susceptibility (Harvell
et al. 2007, Palmer et al. 2010, Reed et al. 2010,
Libro et al. 2013, Randall et al. 2014). Randall & van
Woesik (2015) showed a clear linkage be tween
ocean warming and contemporary WBD outbreaks.
Ac cordingly, coral reefs will likely continue to expe-
rience disease outbreaks (Smith et al. 2006, Harvell
et al. 2007), with multiple compounding stressors
propelling some species like the acroporids towards
extinction (Carpenter et al. 2008, Veron et al. 2009,
Glynn 2011, Birkeland et al. 2013).

Given the complex biotic and abiotic factors
influencing WBD, it is critical that we employ a
transdisciplinary approach to studying this disease.
By combining field surveys that can link disease
signs to environmental factors, molecular microbial
studies that can identify changes in the coral mi -
cro biome associated with macroscopic tissue loss
(Ritchie & Smith 1998, Gil-Agudelo et al. 2006,
Polson 2007, Sweet et al. 2014), and histopathology
that can reveal visible biotic pathogens present on
the surface or in the tissue and their impacts (Luna
et al. 2010, Work et al. 2012, Sweet et al. 2013,
Pollock et al. 2014a, Bruckner 2015), we can begin
to understand the linkages among pathogens and
processes (e.g. Richardson et al. 2001, Work et al.
2008, Work & Aeby 2011, Work & Meteyer 2014,
Burge et al. 2016).

In this study, we used this multi-pronged ap -
proach to assess the impact of a WBD outbreak on
an A. cervicornis community off northern Miami
Beach in Miami-Dade County, Florida. The objec-
tives were to (1) quantify the prevalence of WBD
at our study site; (2) examine the potential influ-
ence of temperature on timing of the outbreak and
potential links between the outbreak and coral
bleaching; (3) characterize and draw links between
the microbiomes and tissue condition of corals
with and without disease signs; and (4) identify
bacteria shared between these corals and other
disease outbreaks.

2.  MATERIALS AND METHODS

2.1.  Study site

This study was undertaken on the innermost
(1.5−2 km offshore) of a series of submerged (6−
11 m deep), shore-parallel fossil reef terraces off Mi-
ami Beach (Walker 2012) — the remains of a 150 km
long barrier-reef system dominated by Acropora spp.
during the Holocene (Lighty et al. 1978, Precht &
Aronson 2004) (Fig. S1 in the Supplement at www. int-
res. com/ articles/ suppl/ d137 p217 _ supp .pdf). The ter-
race now consists of patches of A. cervicornis with an
average density of about 0.05 colonies m−2 (DERM
2008). In recent decades, there have been localized in -
creases in A. cervicornis populations in this area (Var-
gas-Ángel et al. 2003, Precht & Aronson 2004, Wirt et
al. 2013, D’Antonio et al. 2016, S. Blair pers. comm.),
which is believed to be the current northern range
limit of this species (Walker 2017). While thickets are
extremely transient (Walker et al. 2012, D’Antonio et
al. 2016), this new growth may be a northern range
expansion due to warming SSTs (Precht & Aronson
2004, Precht et al. 2014, Kuffner et al. 2015).

2.2.  Seawater temperatures

We used SST data from the NOAA National Data
Buoy Center, Fowey Rock Station (NOAA 2015), lo -
cated within Biscayne National Park, 28 km away
from the survey site. Timing of temperature changes
was compared to timing of coral bleaching and dis-
ease prevalence data recorded at our monitoring
site.

2.3.  Ecological field data collection

To collect data on coral condition, we used timed
swim surveys along the inner-reef tract (Fig. S1). In
total, 6 surveys were performed between October
2013 and October 2014 (see Table 1). The diver
entered the water at a fixed geographic coordinate
and swam in a roughly rectangular pattern approxi-
mately 1 m above the substrate, stopping occasion-
ally to take notes and photographs, returning to the
start within 30 min. Water depth varied between 6
and 8 m, and approximately 600 m2 of reef benthos
were sampled during each survey. We were unable
to place permanent transects at this location due to
permitting restrictions associated with the ad hoc
nature of our surveys.

https://www.int-res.com/articles/suppl/d137p217_supp.pdf
https://www.int-res.com/articles/suppl/d137p217_supp.pdf
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The diver recorded the total number and condition
of A. cervicornis colonies seen, with individual colo -
nies defined as ‘connected skeletal branches with
a common basal attachment to the substrate’ (Hunt-
ington & Miller 2014). Various signs of coral stress, re-
cent mortality, and recent partial mortality were noted
using a standard set of diagnostic criteria de veloped
by W. F. Precht (unpubl.). Signs of previous stress
include WBD (evenly distributed tissue loss from base
to tip, sensu Gladfelter 1982), feeding scars from the
corallivorous gastropod Coralliophila abbreviata (pres -
ence of snail, uneven tissue loss up one side; Ott &
Lewis 1972), the presence of the fireworm Hermodice
carun culata (tissue loss on tips of branches only, Ott
& Lewis 1972), territories and spot-biting of the three-
spot damselfish Stegastes planifrons (spots of tissue
loss colonized by algae; Precht et al. 2010), and coral
bleaching (loss of pigmentation but intact tissue;
Glynn 1993) (Fig. 1). On many co lonies, more than 1
condition or combination of conditions were noted.
Recent mortality was classified as white ske leton with
minimal algal turf. Corals observed during the sur-
veys were photographed using a Sealife DC600 un-
derwater camera and housing. A follow-up timed-
swim survey was undertaken 1 yr after the initial
outbreak on 20 September 2015.

2.4.  Sample collection for laboratory analysis

In total, divers collected 20 branch fragments (2 cm)
from 5 living colonies of A. cervicornis on 1 October
2014. When the outbreak was first documented, permits
were requested, but delays in the process meant that

sampling could only occur in October. The permits only
allowed sampling of co lonies al ready displaying dis-
ease signs to protect unaffected colonies. Each of the 5
colonies had multiple branches with active disease
as well as multiple branches that ap peared healthy
(no outward signs of disease, bleaching, or predation).
Two (2 cm) branch tips that ap peared to be healthy and
2 that had tissue loss (including the disease margin,
60% tissue, and 40% recently exposed skeleton; Fig. 1)
were taken from each parent colony using garden clip-
pers. Because the tissue-loss margins were removed
from these colonies, the apparently healthy tissue re -
mained intact when observed 1 mo after sampling.

On returning to the boat, 5 apparently healthy
and 5 diseased samples (H1–5 and D1–5, respectively;
1 pair from each parent colony) were placed in indi-
vidual pre-labeled sample vials containing 1 ml of
guanidine thiocyanate DNA buffer (Fukami et al.
2004) for 16S sequencing (see Section 2.5 for details).
The apparently healthy and diseased branch tips for
histopathology were transferred to 50 ml plastic cen-
trifuge tubes containing a formaldehyde- based fixa-
tive solution made of 1 part Z-Fix Concentrate (Ana -
tech) diluted with 4 parts 35 ppt seawater (marine
salts diluted with deionized water) and tightly sealed
(see Section 2.6 for further details on histopathology).

2.5.  16S sequencing

2.5.1.  Library preparation and sequencing

DNA was extracted from the 10 samples and a
blank control using the Agencourt DNAdvance bead
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Fig. 1. (A) Apparently healthy thick-
ets of Acropora cervicornis at the
northern Miami Beach monitoring
site, 16 October 2013. (B) Close-up
white band disease (WBD) progres-
sion; note col o ni za tion by turf algae on
recently dead, exposed skeleton. (C)
Colony with both WBD and fireworm
predation scars (indicated by arrows),
8 July 2014. (D) Same colony as in (C),
with 100% mortality approximately 

2 mo later, on 17 September 2014
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extraction kit (Agencourt Bioscience). The V6 hyper-
variable region of the 16S gene was chosen for its
high sensitivity to diversity in a short region (Barriuso
et al. 2011, Caporaso et al. 2012). The region was
amplified in individual PCR reactions with custom
barcoded primers as described by Gignoux-Wolfsohn
& Vollmer (2015). The concentration of PCR pro -
ducts was determined using a Qubit 2.0 fluorometer
(Thermo Fisher Scientific), and products were pooled
to normalize concentration across samples. To re -
move primer-dimers and dNTPs, final PCR products
were cleaned with DNAmpure beads (Agencourt);
the Agilent 2100 Bioanalyzer was then used to check
concentration and length of products. PCR products
were sequenced using paired-end 150 bp sequen-
cing on the Illumina Hiseq 2000.

2.5.2.  Bioinformatics

Overlapping of paired reads was performed using
FLASH (Mago & Salzberg 2011). Sequences were
then demultiplexed, and primers were trimmed and
quality filtered (ends with phred score <20 were re -
moved and resulting sequences <60 bp were thrown
out) using a custom Python script (https:// github.
com/ sagw/ Python_scripts/ blob/ master/ SD1/ SD1 _
demultiplex.py).

Using Qiime 1.9.0, 97% operational taxonomic units
(OTUs) were picked using the pick open reference
OTUs method (http:// qiime. org/ scripts/ pick _ open _
reference _ otus. html), and taxonomy was as signed us-
ing BLAST against the SILVA database (Quast et al.
2013). Chimeras were detected and removed with
UCHIME (Edgar et al. 2011). De tails of bio informatics
and analyses can be found at https:// github. com/
sagw/ Miami_ WBD/ tree/ master/ Notebooks.

2.5.3.  Statistical analyses

Normalized counts of OTUs were calculated using a
modified version of the ‘sizeFactors’ function in the R
package DESeq2, where counts are normalized by
the geometric mean of each sample (Love et al. 2014,
McMurdie & Holmes 2014). Non-metric multidimen-
sional scaling (nMDS) to visualize Bray-Curtis dissim-
ilarities was performed using the metaMDS function
in the R package ‘vegan.’ The significance of the com-
munity-level effect of disease state was tested by
PERMANOVA of Bray-Curtis dissimilarities using the
‘Adonis’ function in ‘vegan.’ Diversity metrics were
calculated using the ‘diversity’ and ‘betadisper’ func-

tions in ‘vegan’ (Oksanen et al. 2013), and phyloge-
netic diversity was calculated using the ‘pd’ function
in ‘picante.’ Significant differences in individual OTU
abundance were identified with negative binomial
generalized linear models (GLMs) run for each OTU,
using the R package DESeq2. The data were fit to a
negative binomial distribution, and the likelihood
ratio test for significance of GLM terms was used to
identify OTUs that differed significantly between dis-
eased and apparently healthy samples (p-value ad-
justed by FDR < 0.05; Love et al. 2014). Bar charts and
bubble charts were created using ggplot2 (Wickham
2009); bubble charts were made for orders that made
up at least 5% of the microbiome of at least 1 coral.

2.6.  Histopathology

Each sample was photographed, then cut into
~2 cm long portions with a diamond-coated tile-cut-
ting blade fitted on a Dremel tool. To capture organ-
isms or material on denuded skeletal surfaces, sub-
samples with a tissue-loss margin were enrobed in
1.5% agarose. All subsamples were de calcified with
10% disodium EDTA at pH 7, changing the solution
every 48 h, then rinsed with tap water for about
30 min. Subsamples were trimmed into 2−3 mm
slices, placed in tissue cassettes, and embedded in
Paraplast Xtra® (Miller et al. 2014, Peters 2015). Sec-
tions (5 µm thick) were cut with a microtome, mounted
on glass microscope slides, stained with Harris’s
hematoxylin and eosin and Giemsa (Noguchi 1926),
and a coverslip was attached with Permount™
mounting medium. The sections were examined with
a Zeiss Student 16 compound microscope, and pho-
tomicrographs were taken using an Olympus BX43
microscope fitted with an Olympus DP-72 camera.

Semi-quantitative data (Jagoe 1996) were collected
about each sample based on condition at the time of
fixation (tissue architecture, cellular in tegrity, Sym-
biodiniaceae abundance, pathological changes; 0 =
excellent, 1 = very good, 2 = good, 3 = fair, 4 = poor, 5 =
very poor) and the severity of tissue changes, ranging
from normal to severe (0 = within normal limits, 1 =
minimal, 2 = mild, 3 = moderate, 4 = marked, 5 =
severe; see Table S1 in Miller et al. 2014). Symbio-
diniaceae condition and abundance were also scored,
as well as 6 parameters of polyp health (both cell and
tissue), bacterial aggregates, and RLOs (from the
Giemsa-stained sections). Presence/ ab sence was
noted for the following phenomena: hyper trophied
calicodermis foci, necrotic cell spherules, apicomplex -
ans, and ciliates. When possible, the stage of gonad
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development was noted (Szmant 1986). Mean scores
for each sample (across sections created from tissue
blocks) were calculated. Descriptive statistics were
calculated for the scored parameters in the appar-
ently healthy and diseased groups, frequency distri-
butions were examined, and comparisons were made
using Student’s t-tests, applying the sequential Bon-
ferroni correction for p-values (Rice, 1989) and
Mann-Whitney U-tests (Rice 1989).

3.  RESULTS

3.1.  Disease occurrence and prevalence

The first sign of a WBD outbreak (prevalence >5%)
was noted on 8 July 2014, when the disease preva-
lence was measured at 15% (15 of 101 corals sur-
veyed). The maximum prevalence of the disease out-
break was recorded as 63% (69 out of 110 corals
surveyed) in September 2014. The maximum number
of recently dead corals (28 out of 95) was recorded in
October following the maximum disease prevalence
(Table 1, Figs. 1 & 2).

3.2.  Links between temperature, bleaching,
and disease

The beginning of the disease outbreak coincided
with regional SSTs of ~29°C (Fig. 2). By 17 September,

1 mo after the peak recorded temperature, 63% of
the colonies surveyed (69 out of 110) showed signs of
WBD (Figs. 1 & 2). Following regional cooling of SSTs
in early October, the prevalence dropped quickly
and by 22 October, was measured at 6% (5 out of 90
colonies surveyed).

Peak coral bleaching occurred on 17 September
2014, when 30% (33 of 110 Acropora cervicornis
corals surveyed that day) showed signs of bleaching
(Fig. 2). Soon after the temperatures decreased,
bleached corals began showing signs of recovery,
with most A. cervicornis colonies regaining their color
within a few weeks (Table 1).

3.3.  Difference between diseased and apparently
healthy coral bacterial communities

Ten samples were sequenced, yielding 684 925
reads, which clustered into 6605 OTUs. The bacterial
communities of apparently healthy coral tissue were
significantly different from those of diseased coral
tissue (PERMANOVA df = 1,9, p = 0.049, R2 = 0.23).
This result was corroborated by the nMDS plot,
where all diseased coral tissue samples clustered
together except for sample D5 (Fig. 3). Diseased coral
tissue exhibited a characteristic increase in bacterial
diversity as measured by Shannon’s index (healthy =
2.65, diseased = 4.95, t-test p = 0.015) and Faith’s D
phylogenetic diversity (Faith 1992) (healthy = 36.93 ±
4.59, diseased = 90.42 ± 33.39, t-test p = 0.022) but
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Fig. 2. Relationship between sea sur-
face temperature and prevalence of
coral bleaching and white band dis-
ease (WBD) on Acropora cervicornis
(ACER) colonies monitored during
timed- swim surveys. Temperature
data were downloaded from NOAA
National Data Buoy Center, Fowey
Rock Station (FWYF1), east of Soldier
Key within Biscayne National Park.
Grey horizontal line at 30.4°C repre-
sents regional coral bleaching thresh-
old (from Manzello et al. 2007). Light-
blue line at 29.0°C represents the
approximate turn-on and turn-off
threshold for WBD in this study. Coral
bleaching prevalence is the propor-
tion of paled and bleached A. cervi-
cornis colonies re corded during the
timed-swim surveys. WBD preva-
lence is the pro portion of actively dis-
eased A. cer vi cornis recorded during
these same surveys. Arrow denotes
timepoint when samples were taken 

for histology and sequencing
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dispersion was not significantly higher (healthy =
0.36, diseased = 0.48, ANOVA p = 0.15). Apparently
healthy coral tissues were dominated by Rickettsiales
and Campylobacterales (Fig. 4). In contrast, diseased
coral tissue had lower proportions of Rickett siales
and Campylobacterales and were instead dominated
by Alteromonadales, Flavobacteriales, Sphingobac-
teriales, and Oceanospirillales. The outlier sample D5
contained a microbiome more similar to the appar-
ently healthy corals, dominated by Rickettsiales.

3.4.  Significantly different OTUs

We identified 122 OTUs that significantly differed
in abundance (hereafter ‘enriched’) between diseased
and apparently healthy corals: 1 was en riched in

apparently healthy corals and 121 were enriched in
diseased corals. The healthy-enriched OTU belonged
to the order Sphin go bacteriales (family Chitino -
phaga ceae). OTUs belonging to many orders that
have previously been associated with diseased corals
were identified among the disease-enriched OTUs:
Flavobacteriales (family: Flavobac teriaceae), with
36 OTUs and Sphingo bacteriales (family Sapro -
spiraceae), with 22 OTUs, both within the phylum
Bacter oidetes; Rhodobacterales (family Rho do bac -
teraceae), with 10 OTUs; Altero mo nadales (family
Alteromonadaceae) with 3 OTUs; and Vibrionales
(family Vibrionaceae, genus Vibrio; Fig. 5).

Several families of disease-enriched OTUs in this
study were previously found to be en riched in dis-
eased A. cervicornis in Pana ma as well as multiple
species of coral with signs of stony coral tissue loss
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Fig. 3. nMDS of Bray-Curtis dissimi-
larities between diseased and appar-
ently healthy samples, 2D stress =
0.08. Individuals are labeled accord-
ing to disease state. Ellipses are
95% confidence ellipses around  their

respective centroids

Date Total Apparently Apparently unhealthy (some corals had multiple lesion types)
(mo/d/yr) colonies healthy Fish Snails Fireworm Disease Bleached Partial new Recently

(prevalence) (prevalence) mortality dead

10/16/2013 109 89 (82%) 6 4 12 5 (4%) 0 20 0
7/8/2014 101 69 (68%) 8 8 15 15 (15%) 0 42 2
8/6/2014 97 43 (44%) 6 5 7 24 (25%) 8 (8%) 48 4
9/17/2014 110 12 (11%) 8 6 8 69 (63%) 33 (30%) 83 15
10/1/2014 95 40 (42%) 7 10 11 12 (13%) 0 27 28
10/22/2014 90 46 (51%) 7 5 7 5 (6%) 0 21 25
9/20/2015 82 60 (73%) 6 8 10 3 (4%) 4 (5%) 19 3

Table 1. Combined data for all Acropora cervicornis colonies observed during the timed-swim survey sites. ‘Apparently
healthy’ column represents colonies that had no outward stress indicator(s) or partial mortality during the survey. On many
colonies, more than 1 condition or combination of conditions were observed (including feeding scars from three-spot dam-
selfish, snails, and fireworm) to have been responsible for causing recent partial mortality. Colonies with exposed white skele-
ton, with minimal algal turf, and no visible living coral tissue were deemed ‘recently dead’. Because not all colonies were sur-
veyed at every time point, each time point should be considered independently; total numbers of apparently healthy and dead 

corals cannot be calculated from these data
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in Florida (Meyer et al. 2019). Several families, in-
cluding Vibrionaceae, Saprospiraceae, Rhodo bactera -
ceae, and Flavobacteriaceae were en riched in all spe-
cies of diseased samples across all 3 studies. Other
families, such as Rhodo spi rillaceae, Entero bac teria -
ceae, Chi tin  o phagaceae, and Bacteriovoraceae were
only enriched in A. cervicornis displaying signs
of WBD in both Panama and Florida (Fig. 6).

3.5.  Histopathology

The apparently healthy samples were all
from growing branch tips, about 3−6 cm long,
tapering from the apical polyp to about 1 cm in
diameter at the cut end. Four out of 5 diseased
samples came from older portions of branches,
about 1.5−2 cm in diameter and 2−6 cm long,
with the exception of D5, which was an apical
branch tip 11 cm long and 1.3 cm in diameter at
the cut end. The diseased samples had severe
acute tissue (polyps and coen enchyme) loss
generally consistent with signs of WBD type I,
although samples D3 and D5 had patches of tis-
sue remaining on the skeleton consistent with
rapid tissue loss (Miller et al. 2014, their Table 1).
D4 did not appear to have tissue loss, but had a
greenish discoloration on the basal end, which
presented microscopically as endo lithic fine
pink filaments and debris on the H&E-stained
section.

Apparently healthy samples were in very
good to good condition (Table 2), with cellular
and tissue architecture and staining character-
istics re sembling normal apical tip develop-
ment. All had abundant co enenchyme epi -
dermal muco cytes with pronounced mucus

secretion. Mild to moderate RLO levels were found in
tentacles, oral disk, actinopharynx, cnidoglandular
bands, and gastrodermal mucocytes of each polyp;
fewer were seen in the apical polyp and most recently
formed lateral polyps at the branch tip (Fig. 7). H4
had small primary oocytes developing in mesenteries
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Diseased Healthy

D1 D2 D3 D4 D5 H1 H2 H3 H4 H5

Alteromonadales

Campylobacterales

Flavobacteriales

Oceanospirillales

Rhizobiales

Rickettsiales

Sphingobacteriales

Colony

Percent

Fig. 4. Dominant bacterial orders of diseased and healthy coral microbiomes. Only orders making up ≥5% of at least one coral
were included. Size of bubble corresponds to the average percent of the microbiome made up of that order for either healthy 

or diseased individuals
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in the basal subsample. H1 and H3, in contrast, had
dissociation and necrosis of deep polyp cnidoglandu-
lar band epithelial cells and atrophied, lysing interior
calicodermis lining deep gastrovascular canals in the
basal subsamples typical of coral affected by tissue
loss (Fig. 8).

Diseased samples exhibited moderate to severe
pathology in all parameters, including tissue frag-
mentation, cell necrosis or lysing, and loss of mu co -
cytes. Epithelia were atrophied or lysed where co -
vering costae. Symbiodiniaceae were present in
gastro dermal cells, but fewer than in apparently
healthy samples, with increased degradation in the
more severely affected samples. RLO levels were
similar to those found in the apparently healthy
samples, but decreased as mucocytes were lost,
resulting in a broader range in scores (Table 2, Fig.
8). Neither apparently healthy nor diseased samples
contained the bacterial aggregates first reported to
be associated with WBD (Peters 1984). The diseased
samples had multifocal atrophy and lysing of the
calico dermis, particularly along the deep gastrovas-
cular canals. However, 4 of the 5 diseased samples
(compared to 1 of the 5 apparently healthy samples;
Table 2) also had multifocal areas of hypertrophied
calicoblasts secreting coral acid-rich proteins (eo sino -
philic apical granules, Fig. 9). One sample, D5, had
a few well-degraded necrotic cell spherules in the

agarose (Miller et al. 2014). Two samples (D2 and D5)
contained ciliates. In sample D5, ciliates were trapped
in the agarose that covered and infiltrated the skele-
ton well away from coral tissue. Most of these ciliates
had bullet-shaped nuclei and lacked Symbiodi-
naceae, but a few contained degraded algal cells in
their vacuoles, and some of the ciliates were too
degraded to verify presence or absence of Symbiodi-
naceae. Three degraded ciliates lacking Symbiodi-
naceae were also identified in sample D2 adjacent to
necrotic coral tissue in the gastrovascular cavities
(Fig. 10). Most tissue parameters were significantly
different between apparently healthy and diseased
samples (Mann-Whitney U-test; Fig. 11), but scores
of mesenterial filament mucocytes, dissociation of
mesenterial filaments, and RLO intensities in the ten-
tacle epidermis, cnidoglandular bands, and gastro-
dermal mucocytes were not significantly different.

4.  DISCUSSION

4.1.  Links between WBD outbreak, temperature,
and bleaching

The 2014 outbreak of WBD was strongly linked to
increased SST. Elevated temperatures likely com -
promise the host and increase pathogen prevalence
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Parameter Apparently healthy Diseased
Mean SD Range Mean SD Range

General condition (100×) 1.5 0.3 1−1.7 3.8 0.2 3.5−4.0
Symbiodiniaceae (100×) 1.1 0.1 1−1.3 3.2 0.6 2.5−4.0
Epidermal mucocyte condition 2.0 0.3 1.5−2.3 3.9 0.3 3.3−4.3
Mesenterial filament mucocytes 2.5 0.6 1.5−3.0 4.1 0.7 3.0−5.0
Degeneration of cnidoglandular bands 1.6 0.4 1.0−2.0 3.9 0.5 3.0−4.3
Dissociation of mesenterial filaments 1.1 0.7 0.0−1.7 3.2 1.3 1.0−4.0
Costal tissue loss 0.8 0.2 0.5−1.0 3.5 1.0 2.5−4.0
Calicodermis condition 1.4 0.3 1.0−1.7 3.6 0.4 3.0−4.0
Bacterial aggregates 0.0 0.0 0.0−0.0 0.0 0.0 0.0−0.0
Epidermal RLOs 2.2 0.7 1.0−3.0 2.7 0.6 2.0−3.5
Filament RLOs 2.3 0.4 2.0−3.0 2.3 0.6 1.5−3.0

2.1 0.6 1.0−2.5 2.1 1.1 0.5−3.7

Percent affected (presence/absence)

Coccidia 0 0
Calicodermis repair 20 80
Necrotic cell spherules 0 20
Symbiodiniaceae-containing ciliates 0 20
Non-Symbiodiniaceae ciliates 0 40
Oocytes 20 0
Spermaries 0 0

Table 2. Summary statistics for histopathological observations on all apparently healthy (n = 5) and diseased (n = 5) samples 
collected off northern Miami Beach. RLO: Rickettsiales-like organism
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and virulence. These findings contrast with a previ-
ous study of WBD in Florida that did not find a link
between tem perature and disease prevalence (Miller
et al. 2014). Across species, evidence is increasing
that corals exposed to elevated seawater tempera-
tures are more susceptible to tissue-loss diseases
than those that have not been heat stressed (Brandt
& McManus 2009), with the frequency of tempera-
ture-induced disease outbreaks continuing to accel-
erate (Maynard et al. 2015). Recent work by Muller et
al. (2018) found that Acropora cervicornis that had
bleached due to heat stress were less disease resist-
ant than corals that had not experienced this stress.
Elevated seawater temperature and lowered salinity,
which was also recorded during the 2014 outbreak
(Carsey et al. 2016), are known to alter mucus pro-
duction and composition as they also kill coral and
algal cells (Peters & Pilson 1985, Vargas-Ángel et
al. 2007, Downs et al. 2009). Whether these abiotic
factors alone elicited the disease signs, compro-
mised the coral allowing pathogens to in fect, or al -

ternatively influenced existing bac -
teria allowing them to become patho-
genic remains somewhat un clear (Me -
ra & Bourne 2018).

4.2.  Characterization of apparently
healthy colonies by histology and

microbiome sequencing

Comparisons of the microbiomes of
apparently healthy and diseased frag-
ments found few OTUs that were con-
sistently enriched in apparently healthy
fragments, supporting previous work
which found that the majority of coral-
associated bacteria are not part of the
core intransient healthy microbiome
(Ainsworth et al. 2015). The only OTU
more abundant in apparently healthy
tissues was in the order Sphingobacte-
riales (family Sa pro spiraceae). Bacteria
in this order have previously been as-
sociated with both diseased and appar-
ently healthy A. cervicornis in Panama
(Gignoux-Wolfsohn & Vollmer 2015),
but little is known about the roles they
play in coral health and disease.

The microscopic anatomy of appar-
ently healthy fragments had minimal
changes, except for RLO presence, tis-
sue atrophy, and dissociation of mes -

enterial filaments deep in the branch. The degrada-
tion of the deeper aboral tissues of the polyps and
gastrovascular canals is probably the result of physi-
ological changes in the oral surface tissues (contain-
ing most of the actively photosynthesizing Symbio-
diniaceae) as cells divide to maintain the polyps on
the surface of the skeleton (Vaughan & Wells 1943,
Barnes & Lough 1992)

4.3.  Molecular and histological signatures
of disease

Histological changes were more pronounced in dis-
eased fragments, with atrophy, necrosis, and lysing of
surface and basal body wall and polyp structures at
the tissue-loss margin. Interestingly, diseased sam-
ples more often had foci of hypertrophied cali-
coblasts filled with coral acid-rich proteins (Mass et
al. 2014) near the tissue-loss margins, which we
hypothesize may signify an effort to form skeletal
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Fig. 7. (A) Photomicrograph of apical polyp (AP) on the apparently healthy (H5)
branch tip above the first lateral polyps (LPs) (H&E). Cells in this region of the
coral are still dividing, and the gastrodermal cells have not yet phagocytosed
Symbiodiniaceae. Me senteries (MES) and tentacles (TEN) of newly developing
LPs are present in the circled areas. (B) Section through the first fully developed
LPs below the AP (H&E). Tentacles, mesenteries, and filaments in the gastro -
vascular cavities are circled. (C) Same area of AP shown in (A) but stained with
Giemsa. Inset shows higher magnification of the developing mesenteries lack-
ing Rickettsiales-like organisms (RLOs) in the cni doglandular band epithelium;
scale bar = 100 µm. (D) Same area of LP shown in (B) but stained with Giemsa,
showing moderate level of dark purple RLOs in sections of the tentacles, ac tino -
pharynx, and cnidoglandular bands of the mesenterial filaments. Inset shows
higher magnification of the cni do glandular bands and lower actinopharynx 

epi thelia (on right) circled in D
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partitions in the face of the more rapid than normal
cell death to maintain polyp integrity and tissue
thickness. These samples show the same microscopic
changes that have been found during histological
examinations of acroporid species and hybrids sam-
pled throughout the Caribbean since 1975 (Peters et
al. 1983, Peters 1984, Miller et al. 2014, Patterson
2015, E. C. Peters unpublished data). With light

micro scopy and histochemical staining, the only bac-
teria that have been clearly seen in WBD-affected
corals are the bacterial aggregates (Pseudomonas
spp.) (Peters et al. 1983, Polson 2007) and RLOs. The
large bacterial aggregates were not seen in any of
these Miami Beach samples, and RLO abundance did
not differ with gross disease signs (see Section 4.4 for
further discussion).
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Fig. 8. (A) Intact cnidoglandular
bands (one circled) and mesen-
teries (one visible at MES) from
H3 sample near surface of branch
about 3.5 mm from the branch tip
(H&E). (B) Dissociated and ne -
crotic cnidoglandular bands (one
circled) and mesenteries (MES,
one visible) section taken deeper
(aborally) from the same sample
of H3 with markedly atrophied
basal body walls (H&E). (C) Area
of intact cnidoglandular bands
and me senteries from H3 with
moderate levels of RLOs in mu-
cocytes present as dark blue
cells (lines pointing to some of
the individual infected cells);
some of the mucocyte-rich areas
are circled (stained with Giemsa,
scale bar as in A). (D) Area of dis-
sociated cnidoglandular bands
with loss of mucocytes and re-
lease of RLOs from D3 (Giemsa,

scale bar as in B)

Fig. 9. (A) Section from sample
H5 tentacle showing different
stages of RLO-infected cells in
epidermis, intact (I) and lysing
(L) as multiplied larger reticu-
late cells disrupt the mucocyte
plasmallema and are released to
seawater (stained with Giemsa.
(B) Section from sample D5 ten-
tacle showing loss of mucocytes
and lysing RLO-infected muco-
cytes (L) in epidermis (Giemsa).
(C) Area of calicodermis with
thin columnar calico blasts pro-
ducing abundant apical granules
of coral acid-rich pro teins to en-
hance calcification (H&E). (D)
Higher magnification at junc -
tion of hypertrophied calicoblasts
(C) on right with squamous, atro -
phied calicodermis-mesoglea-
gastrodermis of basal body wall 

(BBW) on left (H&E)
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Ciliates have been associated with multiple coral
white syndromes (Sweet & Bythell 2012), including
WBD (Sweet et al. 2014). While many of these ciliates
are presumably attracted to and feeding on the in-
creased bacteria and metazoans colonizing the de-

nuded skeleton, some appear to con-
sume the coral tissue either di rectly
off the coral or after it has become de-
tached (Sweet & Séré 2016). While we
ob served ciliates in the agarose sur-
rounding the skeleton of 2 out of 5
samples, only a few of the observed
ciliates in 1 sample contained visible
Symbiodiniaceae, suggesting that they
were not actively consuming tissue
(Table 2). It is possible that ciliates
lacking Symbiodinaceae had con-
sumed and already digested coral tis-
sue, based on the appearance of
debris in the digestive vacuoles of a
few ciliates in sample D5. This obser-
vation does support the need for time-
series sampling, since ciliate abun-
dances may vary widely due to their
mobility. Cilliates may also be lost
during sample collection and process-
ing — although the agarose-enrobing
technique can reduce loss during de-
calcification — or they were not pres-
ent in the particular sections exam-

ined. Genetic identification is required to confirm
ciliate absence in the other samples.

16S sequencing allows us to identify bacteria asso-
ciated with diseased fragments that do not form ag-
gregates visible by histology. Most of the diseased
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Fig. 10. Examples of the ciliates found (all stained with H&E). (A) Two of 3 ciliates
seen in section from sample D2; coral cnidoglandular bands and basal body walls
are necrotic and the ciliates are pale, appear to be degenerating. (B) The re -
maining ciliate found near A from D2. (C) Cluster of ciliates with bullet-shaped
macronuclei lacking Symbiodiniaceae from sample D5. (D) Cluster of ciliates 

from D5 with digested dinoflagellates in vacuoles; the lower one has lysed

Fig. 11. Mean scores for tissue pa-
rameters examined in the appar-
ently healthy samples compared
to the diseased samples. Scales
for each parameter are as follows:
general condition, epidermal mu-
cocyte condition, mesenterial fila-
ment mucocytes, calicodermis
con dition, 0 (excellent) to 5 (very
poor); Symbiodiniaceae 0 (high-
est abundance) to 5 (no Symbio-
diniaceae present); degeneration
of cnidoglandular bands, disso-
ciation of mesenterial filaments,
costal tissue loss, 0 (none) to 5
(heavy); epidermal RLOs, fila-
ment RLOs, gastrodermal RLOs,
0 (none present) to 5 (highest
abun dance). 

*
: significant dif -

ferences between the groups
based on sequential Bonferroni
correction for p-values in Stu-
dent’s t-tests (p < 0.0045) and
Mann-Whitney U-tests (p < 0.05)
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fragments contained a notably more diverse bacterial
community both in terms of classic diversity metrics
and phylogenetic diversity than those of the appar-
ently healthy fragments (Fig. 4), consistent with previ-
ous studies of WBD and other coral diseases (e.g. Pan-
tos & Bythell 2006, Closek et al. 2014, Roder et
al. 2014b, Gignoux-Wolfsohn & Vollmer 2015). While
not significant, the diseased coral microbiomes were
more dispersed around their centroid, meaning that
apparently healthy microbiomes may be more similar
to each other than diseased microbiomes are, as has
been found previously (e.g. (Zaneveld et al. 2016).
Dysbiosis, rather than the presence of a single patho-
gen, may therefore be the primary indication that a
coral is diseased (Rosenberg et al. 2007, Bourne et al.
2009, Sunagawa et al. 2009, Zaneveld et al. 2017).
Due to technical limitations, we were not able to sam-
ple corals multiple times over the course of the disease
outbreak, which would have provided us with a more
complete picture of how changes in the microbiome
are linked to the development of disease signs. Pre -
vious research tracking changes in abundance of dis-
ease-associated bacteria through time has shown
that most of the increased diversity on diseased corals
is caused by opportunistic associates or second ary pa-
thogens increasing in abundance after corals display
disease signs (Gignoux-Wolfsohn et al. 2017).

Rhodobacteraceae (28 disease-associated OTUs)
form the most widespread associations with diseased
corals across species and disease signs, indicating
that they are not disease-specific primary pathogens
(Mouchka et al. 2010, Klaus et al. 2011, Cárdenas et
al. 2012, Roder et al. 2014b, Ng et al. 2015, Pollock et
al. 2017). Rhodobacteraceae are more abundant on
coral-dominated reefs than on algal-dominated reefs,
indicating that they may be symbionts of multiple
species of coral (Haas et al. 2016). In corals display-
ing disease signs, Rhodobacteraceae may therefore
be responding to the disease as opportunists or de -
fensive symbionts. Like Rhodobacteraceae, Altero -
monadaceae are commonly found in high abun-
dances on both healthy (Cárdenas et al. 2012, Ceh et
al. 2013) and diseased corals (Frias-Lopez et al. 2002,
Sunagawa et al. 2009, Roder et al. 2014a, Gignoux-
Wolfsohn & Vollmer 2015).

Similarly, bacteria in the family Flavobacteraceae
have been associated with many other coral diseases
(Frias-Lopez et al. 2002, Apprill et al. 2013, Roder et al.
2014b, Ng et al. 2015), but are found in higher abun-
dance on algae-dominated than on coral-dominated
reefs (Haas et al. 2016). The high variation across sam-
ples in OTU abundances is to be expected from a group
of bacteria that may be secondary colonizers respond-

ing to the dying coral or secondary metabolites of the
primary pathogen(s). We also found multiple OTUs
belonging to Saprospiraceae to be disease-enriched,
in keeping with previous studies (Gignoux- Wolfsohn
& Vollmer 2015, Gignoux-Wolfsohn et al. 2017).

Often presumed to be the most widespread coral
pathogens, Vibrio spp. (1 OTU) have been linked to
both bleaching (e.g. Rosenberg & Ben-Haim 2002,
Ben-Haim et al. 2003, Luna et al. 2010) and tissue-
loss diseases (e.g. Ushijima et al. 2012, 2014) in mul-
tiple coral species. V. carchariae has been previously
found in the bleaching margin of WBD type II, in
both the Bahamas (Ritchie & Smith 1998) and Puerto
Rico (Gil-Agudelo et al. 2006), suggesting that this
pathogen may be involved in the loss of Symbiodini-
aceae that we observed in intact tissue adjacent to
tissue sloughing. Whether the WBD signs observed
here are caused by the same pathogen as WBD
observed in other parts of the Caribbean is unknown,
and targeted genetic analysis is needed to determine
if the Vibrio found here, which was present in all dis-
eased samples and absent from healthy samples, is
similar to the previously isolated V. carchariae. A
new disease-associated OTU in the order Chlamydi-
ales was abundant in 3 out of 5 diseased samples.
This is the first time a molecular identification of
Chlamydiales has been made on A. cervicornis.

While we found significant differences in both his-
tology and microbiome composition between ap -
parently healthy and diseased samples, the variation
in both metrics among samples underscores the value
of considering ‘disease’ and ‘health’ along a contin-
uum rather than as binary states (Figs. 5 & 9). The his-
tology revealed differences in tissue condition among
apparently healthy colonies, with 2 out of the 5 dis-
playing minor early signs of tissue loss. While these
differences did not correlate with any noticeable
changes in the microbial community, we found con-
siderable variation in OTU abundance across disease-
associated OTUs and samples, in dicative of the com-
plexity of this disease. Interestingly, the diseased
sample from colony 5 did not have as diverse a micro-
biome as the other corals. While the gross appearance
of this sample was that of rapid tissue loss, there were
no significant differences in the histology be tween
this colony and the other samples displaying disease
signs. The lower overall diversity of sample 5 was re-
flected in the abundance of disease-enriched OTUs,
with disease-enriched OTUs in the families Rhodobac-
teraceae, Saprospiraceae, and Flavo bac teriaceae, and
the genus Vibrio all displaying lower abundance in
sample 5 than the other samples. It is possible that the
tissue on this coral may be sloughing more rapidly,
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not allowing as much time for secondary colonization
on the tissue as the other diseased samples (Gignoux-
Wolfsohn et al. 2017). Alternatively, this may be an
example of tissue loss that is not caused by bacterial
pathogens. This pattern did not hold true for all
groups of disease enriched OTUs; Alteromonadaceae
had much lower abundances in the diseased sample
from colony 1, potentially indicating that these groups
of bacteria may be playing different roles in the dis-
eased-coral microbiome. The bacteria identified here
may be playing multiple roles in diseased corals: pa-
thogens causing tissue loss, digesters of cells and
mesoglea at the margin, and also settlers on the de-
nuded skeleton. Critical questions that cannot be an-
swered by mole cular microbiology analyses are (1)
Exactly where are these WBD-associated microbial
pathogens found in the tissues? and (2) How do they
contribute (if at all) to the loss of the coral tissue from
the skeleton? The next step is to use in situ hybridiza-
tion procedures to explore the relationships of specific
categories or strains of microbes and distinguish be-
tween bacterial diseases and cell necrosis, apoptosis,
or lysing in tissue-loss diseases caused by other stres-
sors (Ainsworth et al. 2007, Work & Meteyer 2014,
Sweet & Séré 2016).

4.4.  Rickettsial abundance is independent
of gross disease signs

Likely an obligate intracellular bacterium, an RLO
recently identified as Candidatus Aquarickettsia
rohweri (Klinges et al. 2019) has been associated
with both apparently healthy A. cervicornis and those
displaying disease signs (Casas et al. 2004). RLOs
were seen in all corals examined here, regardless of
disease state, in keeping with previous findings that
the RLOs are present in all acroporid samples exam-
ined thus far from diverse Caribbean locations col-
lected for histological examination since 1975, (Peters
2014, Di Lauro 2015). Previous histological examina-
tion and in situ hybridization have shown that the
RLOs occupy staghorn coral mucocytes, multiplying
and growing to form reticulate bodies, which fill the
mucocytes and rupture the plasmallema (Fryer et al.
1992, Sun & Wu 2004, Miller et al. 2014, Norfolk
2015). Whether the effects of RLOs on coral muco-
cytes influence tissue loss is unclear, but an alteration
of the surface mucopolysaccharide layer produced by
the mucocytes could influence the beneficial micro-
bial community as well as production of antimicro-
bial compounds, resulting in a more susceptible coral
(Koh 1997, Brown & Bythell 2005, Ritchie 2006, Wool -

dridge 2009). Klinges et al. (2019) found that Ca. A.
rohweri lacks genes required for amino acid synthe-
sis, suggesting that it acquires them from the coral
host and algal symbionts, likely weakening the host
and making it more susceptible to further infections.
The corals surveyed here have a high abundance of
OTUs in the order Rickettsiales, with the bacterial
communities of all apparently healthy samples con-
sisting of at least 20% Rickettsiales, and 1 micro-
biome made up of 76% Rickettsiales. There appears
to be no difference in normalized Rickettsiales abun-
dance between apparently healthy and diseased
samples, only a difference in percent relative abun-
dance due to an increase in other taxa. RLOs were
also visible in roughly equal abundance inside the
mucocytes of the polyps via histological examina-
tions in both apparently healthy and diseased corals.

This observed dominance of Rickettsia in apparently
healthy coral microbiomes contrasts with a study by
Gignoux-Wolfsohn et al. (2017), who found that the
microbiomes of healthy A. cervicornis col onies in
Panama were either dominated by bacteria in the
genus Endozoicomonas or had no dominant group of
bacteria. In that study, only 1 out of 10 colonies was in-
fected by Rickettsiales, although RLOs have been
previously found on Panamanian reefs (Casas et al.
2004). Loss of Endozoicomonas has been shown to
precede the development of disease signs (Gignoux-
Wolfsohn et al. 2017, Certner & Vollmer 2018). Our
finding that these apparently healthy A. cervicornis
from Miami do not have microbiomes dominated by
the potentially beneficial Endozoicomonas, but are in-
stead dominated by Rickettsiales, may indicate de-
creased resilience and increased susceptibility to dis-
ease compared to corals from healthier reefs. The lack
of Endozoicomonas may also be a result of increased
temperature and coral bleaching, and therefore de-
creased disease resistance (Muller et al. 2018). Alter-
natively, the absence of any colonies dominated by
Endozoicomonas may be indicative of the ‘pre-disease’
state of these apparently healthy tissues. We are un-
able to definitively rule out RLOs as the primary cause
of this disease outbreak given our lack of sampling
prior to the start of the outbreak. It is possible that
RLO abundance had previously increased only in
corals that would subsequently show disease signs
when triggered by other factors, although this was not
the case in Panamanian corals sampled over time
(Gignoux-Wolfsohn et al. 2017). More likely, the high
abundance of Rickettsiales seen in these corals may
be due to their proximity to developed land and
therefore increased nutrient runoff. Shaver et al.
(2017) found that while an experimental increase in
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nutrients did not affect WBD prevalence, it did in-
crease Rickettsiales abundance, shifting the micro-
biome to Rickettsiales dominance.

Determining the specific interactions between the
RLOs and both diseased and apparently healthy
corals will involve additional research using transmis-
sion electron microscopy (TEM), which was beyond
the scope of this study due to lack of resources and
funding. TEM may also reveal other subcellular
changes or agents (e.g. viruses) involved in tissue loss.
Shifts in viral communities have been documented
be tween apparently healthy and affected samples us-
ing both TEM and sequencing in other coral diseases
including white syndrome (Pollock et al. 2014b) and
white plague (Soffer et al. 2014). Future work inte-
grating bacterial and viral morphology and location
(TEM) and bacterial and viral diversity (sequencing)
will help to better illuminate the roles these groups of
microbes may be playing in the development of dis-
ease signs both individually and in conjunction.

4.5.  Comparison of disease-enriched families to
other studies of coral disease

The species-specificity of coral tissue loss diseases
remains up for debate, as diagnostic criteria tend to
vary with host species (Rogers 2010). Similar taxa are
often enriched on diseased corals regardless of
species (Roder et al. 2014a). Furthermore, the similar-
ity (in terms of both cause and effect) of disease out-
breaks separated by time and location remains under -
studied. The microbiomes of diseased corals have
been shown to vary across site (Roder et al. 2014b,
Gignoux-Wolfsohn & Vollmer 2015), and there is evi-
dence that similar disease signs can be caused by dif-
ferent pathogens (Sutherland et al. 2016). To help ad-
dress these issues, we compared disease-enriched
OTUs to results from 2 previous studies, one conducted
on diseased and healthy A. cervicornis in Panama
(Gignoux-Wolfsohn et al. 2017), and one on stony
coral tissue loss disease (SCTLD) on 3 species of coral
in Florida (Meyer et al. 2019). It should be noted that
the Florida and Panama A. cervicornis were se-
quenced on the same sequencing run using the same
16S region (V6 vs. V4 for SCTLD) and therefore may
have similarity biases. We found many families that
were enriched in all 3 species, including suggested
pathogens such as Vibrionaceae (Ritchie & Smith
1998, Gil-Agudelo et al. 2006), as well as Rhodobac-
teraceae, which have been found associated with mul-
tiple coral diseases (Mouchka et al. 2010). The family
Flavobacteriaceae, which has consistently been asso-

ciated with WBD-affected A. cervicornis as colonizers
before corals show disease signs (Gignoux-Wolfsohn
& Vollmer 2015, Gignoux-Wolfsohn et al. 2017, Cert-
ner & Vollmer 2018), were also found in all 3 species of
coral affected by SCTLD. Further work is needed to
determine if these families generally colonize com -
promised corals or if certain species or strains cause
disease in different host species. Interestingly, all fam-
ilies that were shared between the Florida WBD corals
and SCTLD corals were also enriched in the Panama
WBD corals, indicating that disease/host species is a
stronger driver of the disease-enriched families than
location. This finding is especially interesting in light
of the observed resistance of A. cervicornis to SCTLD
(Precht et al. 2016, Walton et al. 2018). Families not
enriched in either WBD dataset should be further
 investigated for their role in SCTLD. Families en-
riched in both WBD datasets but not in corals with
SCTLD were generally less-well studied as coral
 pathogens or colonizers, including Victivallaceae, Pu -
niceicoccaceae, Marinilabiaceae, and Chitinopha-
gaceae. While preliminary, this comparison of dis-
ease-enriched families across studies provides a
possible list of families that may be involved specifi-
cally in WBD, rather than general coral tissue loss.

4.6.  Conclusions

Clearly, WBD continues to present a significant,
ongoing threat to the acroporid populations through-
out the region. Our results suggest that the seasonal
nature of WBD outbreaks is largely due to the fre-
quency of thermal-stress events, and that the severity
of these outbreaks may be increased by rates of coral
bleaching. These findings also point to the likely
increase in the impacts of coral diseases with increas-
ing SSTs. Thus, the increasing prevalence and inci-
dence of marine diseases and links to global climate
change (Bruno et al. 2007, Brandt & McManus 2009,
Randall et al. 2014, Randall & van Woesik 2015)
make applied research that synthesizes genetic, his-
tological, epidemiological, and ecological perspec-
tives all the more imperative.

Overall, the bacteria enriched in these Miami A.
cervicornis displaying WBD signs are similar to those
enriched in previous studies of diseased A. cervicor-
nis in Panama (Gignoux-Wolfsohn & Vollmer 2015),
suggesting that there is an A. cervicornis tissue-loss
disease microbiome that is consistent at multiple
locations in the Caribbean. This may indicate that
these disease signs have the same etiology, or that
the increased abundance of multiple bacterial taxa is
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a common response of A. cervicornis to disease or tis-
sue loss. The impact of the observed Rickettsiales
association with the coral host is mediated by the
coral’s nutritional status and exposure to other stres-
sors. These compromised corals may be more suscep-
tible to colonization by other pathogenic bacteria or
their toxins, which may cause apoptosis or necrosis
and lysing of atrophied epithelia with visually evi-
dent tissue sloughing. We now need to identify
where the other bacteria identified here reside in the
tissue and their roles. We also need to know what
conditions control tissue loss, since WBD can stop
before a colony completely dies, suggesting that fac-
tors can change to bring the coral back to a state of
visually apparent health.

Under future scenarios of increasing frequency and
duration of coral disease outbreaks, coral genotypes
with high disease resistance and resilience will
have an ecological advantage over low-resistance
genotypes provided that ability to cope with disease
does not require detrimental tradeoffs. To this end,
understanding the coral immune system, and in par-
ticular its heritable components, and un derstanding
the links between host genetics and beneficial
microbes will be crucial in the search for the host
genotypes best suited to restoration efforts with this
species (Vollmer & Kline 2008, Gignoux-Wolfsohn et
al. 2017, Muller et al. 2018). In addition, deciphering
the specific roles of the pathogens versus the host is
another missing piece of the puzzle that needs to be
addressed and solved (Libro et al. 2013). It is quite
possible that many or most coral disease syndromes
are the result of a general dysfunction of the coral
microbiome−host relationship rather than being
attributable to a monolithic pathogen (Mera &
Bourne 2018). Such information may potentially
lead to the prevention, or at least mitigation, of future
coral disease outbreaks. Understanding the full
nature and function of the coral microbiome, the
genomic basis for disease resistance, pathogen
recognition, and both the innate and adaptive or
adaptive-like immunity of reef-building corals will
be essential for restoring populations of endangered
corals like the Acropora spp. throughout their range
and for fostering the health and welfare of these
ecosystems for future generations to use and enjoy.

Data archive. Sequences have been deposited to the SRA (Bio -
project ID: PRJNA511881, accession nos. SAMN10644736–
SAMN10644745).
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